

Introduction to Reliable Distributed Programming

Rachid Guerraoui · Luís Rodrigues

Introduction to

Reliable Distributed
Programming

With 31 Figures

123

Authors
Rachid Guerraoui

École Polytechnique Fédérale
de Lausanne (EPFL)
Faculté Informatique et Communications
Laboratoire Programmation Distribué (LPD)
Station 14
1015 Lausanne, Switzerland
Rachid.Guerraoui@epfl.ch

Luís Rodrigues

Universidade Lisboa
Faculdade de Ciências
Departamento de Informática
Bloco C6, Campo Grande
1749-016 Lisboa, Portugal
ler@di.fc.ul.pt

Library of Congress Control Number: 2006920522

ACM Computing Classification (1998): C.2, F.2, G.2

ISBN-10 3-540-28845-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28845-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

To May, Maria and Sarah.
To Hugo and Sara.

Preface

This book aims at offering an introductory description of distributed pro-
gramming abstractions and of the algorithms that are used to implement
them in different distributed environments. The reader is provided with an
insight into important problems in distributed computing, knowledge about
the main algorithmic techniques that can be used to solve these problems,
and examples of how to apply these techniques when building distributed
applications.

Content

In modern computing, a program usually executes on several processes: in
this context, a process is an abstraction that may represent a computer, a
processor within a computer, or simply a specific thread of execution within
a processor. The fundamental problem in devising such distributed programs
usually consists in having the processes cooperate on some common task. Of
course, traditional centralized algorithmic issues, on each process individu-
ally, still need to be dealt with. The added difficulty here is in achieving a
robust form of cooperation, despite failures or disconnections of some of the
processes, inherent to most distributed environments.

Were no notion of cooperation required, a distributed program would
simply consist of a set of detached centralized programs, each running on a
specific process, and little benefit could be obtained from the availability of
several machines in a distributed environment. It was the need for coopera-
tion that revealed many of the fascinating problems addressed by this book,
problems that need to be solved to make distributed computing a reality. The
book, not only exposes the reader to these problems but also presents ways
to solve them in different contexts.

Not surprisingly, distributed programming can be significantly simplified
if the difficulty of robust cooperation is encapsulated within specific abstrac-
tions. By encapsulating all the tricky algorithmic issues, such distributed
programming abstractions bridge the gap between network communication
layers, usually frugal in terms of reliability guarantees, and distributed ap-
plication layers, usually demanding in terms of reliability.

VIII Preface

The book presents various distributed programming abstractions and de-
scribes algorithms that implement these abstractions. In a sense, we give the
distributed application programmer a library of abstraction interface specifi-
cations, and give the distributed system builder a library of algorithms that
implement the specifications.

A significant amount of the preparation time of this book was devoted
to preparing the exercises and working out their solutions. We strongly en-
courage the reader to work out the exercises. We believe that no reasonable
understanding can be achieved in a passive way. This is especially true in
the field of distributed computing where a possible underlying anthropomor-
phism may provide easy but wrong intuitions. Many exercises are rather easy
and can be discussed within an undergraduate teaching classroom. Some ex-
ercises are more difficult and need more time. These can typically be given
as homeworks.

The book comes with a companion set of running examples implemented
in the Java programming language, using the Appia protocol composition
framework. These examples can be used by students to get a better under-
standing of many implementation details that are not covered in the high-level
description of the algorithms given in the core of the chapters. Understand-
ing such details usually makes a big difference when moving to a practical
environment. Instructors can use the protocol layers as a basis for practical
experimentations, by suggesting to students to perform optimizations of the
protocols already given in the framework, to implement variations of these
protocols for different system models, or to develop application prototypes
that make use of the protocols.

Presentation

The book is written in a self-contained manner. This has been made pos-
sible because the field of distributed algorithms has reached a certain level
of maturity where details, for instance, about the network and various kinds
of failures, can be abstracted away when reasoning about the distributed
algorithms. Elementary notions of algorithms, first order logics, program-
ming languages, networking, and operating systems might be helpful, but
we believe that most of our abstraction specifications and algorithms can be
understood with minimal knowledge about these notions.

The book follows an incremental approach and was primarily built as a
textbook for teaching at the undergraduate or basic graduate level. It intro-
duces basic elements of distributed computing in an intuitive manner and
builds sophisticated distributed programming abstractions on top of more
primitive ones. Whenever we devise algorithms to implement a given ab-
straction, we consider a simple distributed system model first, and then we
revisit the algorithms in more challenging models. In other words, we first de-

Preface IX

vise algorithms by making strong simplifying assumptions on the distributed
environment, and then we discuss how to weaken those assumptions.

We have tried to balance intuition and presentation simplicity, on the
one hand, with rigor, on the other hand. Sometimes rigor was affected, and
this might not have been always on purpose. The focus here is rather on ab-
straction specifications and algorithms, not on calculability and complexity.
Indeed, there is no theorem in this book. Correctness arguments are given
with the aim of better understanding the algorithms: they are not formal
correctness proofs per se. In fact, we tried to avoid Greek letters and mathe-
matical notations: references are given to papers and books with more formal
treatments of some of the material presented here.

Organization

• In Chapter 1 we motivate the need for distributed programming abstrac-
tions by discussing various applications that typically make use of such
abstractions. The chapter also presents the programming notations used
in the book to describe specifications and algorithms.

• In Chapter 2 we present different kinds of assumptions that we will be mak-
ing about the underlying distributed environment, i.e., we present different
distributed system models. Basically, we describe the basic abstractions on
which more sophisticated ones are built. These include process and commu-
nication link abstractions. This chapter might be considered as a reference
throughout other chapters.

The rest of the chapters are each devoted to one family of related abstractions,
and to various algorithms implementing them. We will go from primitive
abstractions, and then use them to build more sophisticated ones.

• In Chapter 3 we introduce specific distributed programming abstractions:
those related to the reliable delivery of messages that are broadcast to a
group of processes. We cover here issues such as how to make sure that a
message delivered by one process is delivered by all processes, despite the
crash of the original sender process.

• In Chapter 4 we discuss shared memory abstractions which encapsulate
simple forms of distributed storage objects with read-write semantics, e.g.,
files and register abstractions. We cover here issues like how to ensure
that a value written (stored) within a set of processes is eventually read
(retrieved) despite the crash of some of the processes.

• In Chapter 5 we address the consensus abstraction through which a set
of processes can decide on a common value, based on values each process
initially proposed, despite the crash of some of the processes.

• In Chapter 6 we consider variants of consensus such as atomic broadcast,
terminating reliable broadcast, (non-blocking) atomic commitment, group
membership, and view-synchronous communication.

X Preface

The distributed algorithms we will study differ naturally according to the ac-
tual abstraction they aim at implementing, but also according to the assump-
tions on the underlying distributed environment (we will also say distributed
system model), i.e., according to the initial abstractions they take for granted.
Aspects such as the reliability of the links, the degree of synchrony of the sys-
tem, and whether a deterministic or a randomized (probabilistic) solution is
sought have a fundamental impact on how the algorithm is designed.

To give the reader an insight into how these parameters affect the algo-
rithm design, the book includes several classes of algorithmic solutions to
implement the same distributed programming abstractions for various dis-
tributed system models.

Covering all chapters, with their associated exercises, constitutes a full
course in the field. Focusing on each chapter solely for the specifications of
the abstractions and their underlying algorithms in their simplest form, i.e.,
for the simplest model of computation considered in the book (fail-stop),
would constitute a shorter, more elementary course. Such a course could
provide a nice companion to a more practice-oriented course possibly based
on our protocol framework.

References

We have been exploring the world of distributed programming abstractions
for more than a decade now. The material of this book was influenced by many
researchers in the field of distributed computing. A special mention is due
to Leslie Lamport and Nancy Lynch for having posed fascinating problems
in distributed computing, and to the Cornell school of reliable distributed
computing, including Ozalp Babaoglu, Ken Birman, Keith Marzullo, Robbert
van Rennesse, Rick Schlicting, Fred Schneider, and Sam Toueg.

Many other researchers have directly or indirectly inspired the material of
this book. We did our best to reference their work throughout the text. Most
chapters end with a historical note. This intends to provide hints for further
readings, to trace the history of the concepts presented in the chapters, as
well as to give credits to those who invented and worked out the concepts. At
the end of the book, we reference other books for further readings on other
aspects of distributed computing.

Acknowledgments

We would like to express our deepest gratitude to our undergraduate and
graduate students from Ecole Polytechnique Fédérale de Lausanne (EPFL)
and the University of Lisboa (UL), for serving as reviewers of preliminary
drafts of this book. Indeed, they had no choice and needed to prepare their

Preface XI

exams anyway! But they were indulgent toward the bugs and typos that could
be found in earlier versions of the book as well as associated slides, and they
provided us with useful feedback.

Partha Dutta, Corine Hari, Michal Kapalka, Petr Kouznetsov, Ron Levy,
Maxime Monod, Bastian Pochon, and Jesper Spring, graduate students from
the School of Computer and Communication Sciences of EPFL, Filipe Araújo
and Hugo Miranda, graduate students from the Distributed Algorithms and
Network Protocol (DIALNP) group at the Departamento de Informática
da Faculdade de Ciências da Universidade de Lisboa (UL), Leila Khalil
and Robert Basmadjian, graduate students from the Lebanese University
in Beirut, as well as Ali Ghodsi, graduate student from the Swedish Institute
of Computer Science (SICS) in Stockholm, suggested many improvements to
the algorithms presented in the book.

Several implementations for the “hands-on” part of the book were devel-
oped by, or with the help of, Alexandre Pinto, a key member of the Appia
team, complemented with inputs from several DIALNP team members and
students, including Nuno Carvalho, Maria João Monteiro, and Lúıs Sardinha.

Finally, we would like to thank all our colleagues who were kind enough to
comment on earlier drafts of this book. These include Felix Gaertner, Benoit
Garbinato and Maarten van Steen.

Rachid Guerraoui and Lúıs Rodrigues

Contents

1. Introduction . 1
1.1 Motivation . 1
1.2 Distributed Programming Abstractions . 3

1.2.1 Inherent Distribution . 4
1.2.2 Distribution as an Artifact . 6

1.3 The End-to-End Argument . 7
1.4 Software Components . 8

1.4.1 Composition Model . 8
1.4.2 Programming Interface . 10
1.4.3 Modules . 11
1.4.4 Classes of Algorithms . 13

1.5 Hands-On . 15
1.5.1 Print Module . 16
1.5.2 BoundedPrint Module . 18
1.5.3 Composing Modules . 20

2. Basic Abstractions . 25
2.1 Distributed Computation . 26

2.1.1 Processes and Messages . 26
2.1.2 Automata and Steps . 26
2.1.3 Liveness and Safety . 28

2.2 Abstracting Processes . 29
2.2.1 Process Failures . 29
2.2.2 Arbitrary Faults and Omissions . 30
2.2.3 Crashes . 30
2.2.4 Recoveries . 32

2.3 Abstracting Communication . 34
2.3.1 Link Failures . 35
2.3.2 Fair-Loss Links . 36
2.3.3 Stubborn Links . 36
2.3.4 Perfect Links . 38
2.3.5 Logged Perfect Links . 40
2.3.6 On the Link Abstractions . 41

2.4 Timing Assumptions . 43

XIV Contents

2.4.1 Asynchronous System . 43
2.4.2 Synchronous System . 45
2.4.3 Partial Synchrony . 46

2.5 Abstracting Time . 47
2.5.1 Failure Detection . 47
2.5.2 Perfect Failure Detection . 48
2.5.3 Leader Election . 50
2.5.4 Eventually Perfect Failure Detection 51
2.5.5 Eventual Leader Election . 54

2.6 Distributed System Models . 58
2.6.1 Combining Abstractions . 58
2.6.2 Measuring Performance . 59

2.7 Hands-On . 60
2.7.1 Sendable Event . 60
2.7.2 Message and Extended Message . 61
2.7.3 Fair-Loss Point-to-Point Links . 62
2.7.4 Perfect Point-to-Point Links . 62
2.7.5 Perfect Failure Detector . 63

2.8 Exercises . 64
2.9 Solutions . 65
2.10 Historical Notes . 67

3. Reliable Broadcast . 69
3.1 Motivation . 69

3.1.1 Client-Server Computing . 69
3.1.2 Multi-participant Systems . 70

3.2 Best-Effort Broadcast . 71
3.2.1 Specification . 71
3.2.2 Fail-Silent Algorithm: Basic Broadcast 71

3.3 Regular Reliable Broadcast . 72
3.3.1 Specification . 73
3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast 73
3.3.3 Fail-Silent Algorithm: Eager Reliable Broadcast 74

3.4 Uniform Reliable Broadcast . 76
3.4.1 Specification . 77
3.4.2 Fail-Stop Algorithm:

All-Ack Uniform Reliable Broadcast 78
3.4.3 Fail-Silent Algorithm:

Majority-Ack Uniform Reliable Broadcast 79
3.5 Stubborn Broadcast . 81

3.5.1 Overview . 81
3.5.2 Specification . 81
3.5.3 Fail-Recovery Algorithm: Basic Stubborn Broadcast . . 82

3.6 Logged Best-Effort Broadcast . 83
3.6.1 Specification . 83

XV

3.6.2 Fail-Recovery Algorithm: Logged Basic Broadcast 83
3.7 Logged Uniform Reliable Broadcast . 84

3.7.1 Specification . 85
3.7.2 Fail-Recovery Algorithm: Logged Majority-Ack URB. . 86

3.8 Randomized Broadcast . 86
3.8.1 The Scalability of Reliable Broadcast 87
3.8.2 Epidemic Dissemination . 88
3.8.3 Specification . 88
3.8.4 Randomized Algorithm: Eager Probabilistic Broadcast 89
3.8.5 Randomized Algorithm: Lazy Probabilistic Broadcast . 91

3.9 Causal Broadcast . 94
3.9.1 Overview . 94
3.9.2 Specifications . 94
3.9.3 Fail-Silent Algorithm: No-Waiting Causal Broadcast . . 96
3.9.4 Fail-Stop Extension:

Garbage Collecting the Causal Past 98
3.9.5 Fail-Silent Algorithm: Waiting Causal Broadcast 98

3.10 Hands-On . 101
3.10.1 Basic Broadcast . 101
3.10.2 Lazy Reliable Broadcast . 103
3.10.3 All-Ack Uniform Reliable Broadcast 106
3.10.4 Majority-Ack URB . 108
3.10.5 Probabilistic Reliable Broadcast . 109
3.10.6 No-Waiting Causal Broadcast . 112
3.10.7 No-Waiting Causal Broadcast with Garbage Collection 116
3.10.8 Waiting Causal Broadcast . 122

3.11 Exercises . 125
3.12 Solutions . 127
3.13 Historical Notes . 133

4. Shared Memory . 135
4.1 Introduction . 135

4.1.1 Sharing Information in a Distributed System 135
4.1.2 Register Overview . 136
4.1.3 Completeness and Precedence . 139

4.2 (1, N) Regular Register . 140
4.2.1 Specification . 140
4.2.2 Fail-Stop Algorithm:

Read-One Write-All Regular Register 140
4.2.3 Fail-Silent Algorithm:

Majority Voting Regular Register 143
4.3 (1, N) Atomic Register . 146

4.3.1 Specification . 146
4.3.2 Transformation:

From (1, N) Regular to (1, N) Atomic 149

XVI Contents

4.3.3 Fail-Stop Algorithm:
Read-Impose Write-All (1, N) Atomic Register 153

4.3.4 Fail-Silent Algorithm:
Read-Impose Write-Majority (1, N) Atomic Register . . 155

4.4 (N, N) Atomic Register . 157
4.4.1 Multiple Writers . 157
4.4.2 Specification . 158
4.4.3 Transformation:

From (1, N) Atomic to (N, N) Atomic Registers 159
4.4.4 Fail-Stop Algorithm:

Read-Impose Write-Consult (N, N) Atomic Register . . 162
4.4.5 Fail-Silent Algorithm:

Read-Impose Write-Consult-Majority (N, N) Atomic
Register . 162

4.5 (1, N) Logged Regular Register . 164
4.5.1 Precedence in the Fail-Recovery Model 165
4.5.2 Specification . 166
4.5.3 Fail-Recovery Algorithm: Logged-Majority-Voting 167

4.6 Hands-On . 171
4.6.1 (1, N) Regular Register . 171
4.6.2 (1, N) Atomic Register . 174
4.6.3 (N, N) Atomic Register . 178

4.7 Exercises . 181
4.8 Solutions . 182
4.9 Historical Notes . 187

5. Consensus . 189
5.1 Regular Consensus . 189

5.1.1 Specification . 189
5.1.2 Fail-Stop Algorithm: Flooding Consensus 190
5.1.3 Fail-Stop Algorithm: Hierarchical Consensus 193

5.2 Uniform Consensus . 195
5.2.1 Specification . 195
5.2.2 Fail-Stop Algorithm: Flooding Uniform Consensus 196
5.2.3 Fail-Stop Algorithm: Hierarchical Uniform Consensus . 197

5.3 Abortable Consensus . 199
5.3.1 Overview . 199
5.3.2 Specification . 200
5.3.3 Fail-Silent Algorithm: RW Abortable Consensus 201
5.3.4 Fail-Noisy Algorithm: From Abortable Consensus to

Consensus . 204
5.4 Logged Abortable Consensus and Logged Consensus 206

5.4.1 Fail-Recovery Algorithm: Logged Abortable Consensus 206
5.5 Randomized Consensus . 208

5.5.1 Specification . 208

XVII

5.5.2 Randomized Algorithm: Probabilistic Consensus 209
5.6 Hands-On . 212

5.6.1 Flooding Regular Consensus Protocol 212
5.6.2 Hierarchical Regular Consensus Protocol 216
5.6.3 Flooding Uniform Consensus . 219
5.6.4 Hierarchical Uniform Consensus . 222

5.7 Exercises . 225
5.8 Solutions . 226
5.9 Historical Notes . 232

6. Consensus Variants . 233
6.1 Total Order Broadcast . 233

6.1.1 Overview . 233
6.1.2 Specifications . 234
6.1.3 Algorithm: Consensus-Based Total Order Broadcast . . 236

6.2 Terminating Reliable Broadcast . 239
6.2.1 Overview . 239
6.2.2 Specification . 240
6.2.3 Algorithm: Consensus-Based TRB 240

6.3 Non-blocking Atomic Commit . 242
6.3.1 Overview . 242
6.3.2 Specification . 243
6.3.3 Algorithm: Consensus-Based NBAC 244

6.4 Group Membership . 246
6.4.1 Overview . 246
6.4.2 Specification . 247
6.4.3 Algorithm: Consensus-Based Group Membership 248

6.5 View Synchronous Communication . 249
6.5.1 Overview . 249
6.5.2 Specification . 250
6.5.3 Algorithm: TRB-Based View Synchronous Broadcast . 251
6.5.4 Algorithm: Consensus-Based Uniform View

Synchronous Broadcast . 255
6.6 Hands-On . 258

6.6.1 Uniform Total Order Broadcast . 258
6.6.2 Consensus-Based Non-blocking Atomic Commit 263
6.6.3 Consensus-Based Group Membership 266
6.6.4 TRB-Based View Synchrony . 269

6.7 Exercices . 275
6.8 Solutions . 276
6.9 Historical Notes . 285

7. Concluding Remarks . 287
7.1 Further Implementations . 287
7.2 Further Readings . 289

XVIII Contents

Bibliography . 296

Index . 297

1. Introduction

I know what you’re thinking punk. You’re thinking, did he fire six shots or
only five? Well, to tell you the truth, I forgot myself in all this excitement.

But being as this is a .44 Magnum, the most powerful handgun in the world
and will blow your head clean off, you’ve got to ask yourself one question:

do I feel lucky? Well do ya, punk?
(Dirty Harry)

This chapter first motivates the need for distributed programming abstrac-
tions. Special attention is given to abstractions that capture the problems
that underlie robust forms of cooperation between multiple processes in a
distributed system, usually called agreement abstractions. The chapter then
advocates a modular strategy for the development of distributed programs by
making use of those abstractions through specific Application Programming
Interfaces (APIs).

A simple, concrete example API is also given to illustrate the notation
and event-based invocation scheme used throughout the book to describe the
algorithms that implement our abstractions. The notation and invocation
schemes are very close to those we have used to implement our algorithms in
the Appia protocol composition and execution framework.

1.1 Motivation

Distributed computing has to do with devising algorithms for a set of pro-
cesses that seek to achieve some form of cooperation. Besides executing con-
currently, some of the processes of a distributed system might stop operating,
for instance, by crashing or being disconnected, while others might stay alive
and keep operating. This very notion of partial failures is a characteristic of
a distributed system. In fact, this notion can be useful if one really feels the
need to differentiate a distributed system from a concurrent system. It is in
order to quote Leslie Lamport here:

2 1. Introduction

“A distributed system is one in which the failure of a computer you
did not even know existed can render your own computer unusable.”

When a subset of the processes have failed, or become disconnected, the chal-
lenge is usually for the processes that are still operating, or connected to the
majority of the processes, to synchronize their activities in a consistent way. In
other words, the cooperation must be made robust to tolerate partial failures.
This makes distributed computing a quite a hard, yet extremely stimulating,
problem. As we will discuss in detail later in the book, due to several fac-
tors such as the asynchrony of the processes and the possibility of failures in
the communication infrastructure, it may be impossible to accurately detect
process failures, and, in particular, to distinguish a process failure from a
network failure. This makes the problem of ensuring a consistent cooperation
even more difficult. The challenge to researchers in distributed computing is
precisely to devise algorithms that provide the processes that remain operat-
ing with enough consistent information so that they can cooperate correctly
and solve common tasks.

In fact, many programs that we use today are distributed programs.
Simple daily routines, such as reading e-mail or browsing the Web, involve
some form of distributed computing. However, when using these applica-
tions, we are typically faced with the simplest form of distributed computing:
client-server computing. In client-server computing, a centralized process, the
server, provides a service to many remote clients. The clients and the server
communicate by exchanging messages, usually following a request-reply form
of interaction. For instance, in order to display a Web page to the user, a
browser sends a request to the Web server and expects to obtain a response
with the information to be displayed. The core difficulty of distributed com-
puting, namely, achieving a consistent form of cooperation in the presence of
partial failures, may pop up even by using this simple form of interaction.
Going back to our browsing example, it is reasonable to expect that the user
continues surfing the Web (by automatically being switched to other sites) if
the site it is consulting fails, and even more reasonable that the server process
keeps on providing information to the other client processes, even when some
of them fail or get disconnected.

The problems above are already nontrivial to deal with when distributed
computing is limited to the interaction between two parties, such as in the
client-server case. However, there is more to distributed computing than han-
dling client-server interactions. Quite often, not only two, but several pro-
cesses need to cooperate and synchronize their actions to achieve a common
goal. The existence of not only two, but multiple processes, does not make
the task of distributed computation any simpler. Sometimes we talk about
multiparty interactions in this general case. In fact, both patterns may coexist
in a quite natural manner. Actually, a real distributed application would have
parts following a client-server interaction pattern and other parts following
a multiparty interaction pattern. This may even be a matter of perspective.

1.2 Abstractions 3

For instance, when a client contacts a server to obtain a service, it may not
be aware that, in order to provide that service, the server itself may need to
request the assistance of several other servers, with whom it needs to coor-
dinate to satisfy the client’s request. Sometimes, the expression peer-to-peer
is used to emphasize the absence of a central server.

1.2 Distributed Programming Abstractions

Just like the act of smiling, the act of abstracting is restricted to very few
natural species. By capturing properties that are common to a large and
significant range of systems, abstractions help distinguish the fundamental
from the accessory, and prevent system designers and engineers from rein-
venting, over and over, the same solutions for slight variants of the very same
problems.

From The Basics. Reasoning about distributed systems should start by
abstracting the underlying physical system: describing the relevant elements
in an abstract way, identifying their intrinsic properties, and characterizing
their interactions, lead us to define what is called a system model. In this
book we will use mainly two abstractions to represent the underlying physical
system: processes and links.

The processes of a distributed program abstract the active entities that
perform computations. A process may represent a computer, a processor
within a computer, or simply a specific thread of execution within a pro-
cessor. To cooperate on some common task, the processes may typically need
to exchange messages using some communication network. Links abstract the
physical and logical network that supports communication among processes.
It is possible to represent different realities of a distributed system by cap-
turing different properties of processes and links, for instance, by describing
the different ways these elements may fail.

Chapter 2 will provide a deeper discussion on the various distributed
systems models that are used in this book.

To The Advanced. Given a system model, the next step is to understand
how to build abstractions that capture recurring interaction patterns in dis-
tributed applications. In this book we are interested in abstractions that
capture robust cooperation problems among groups of processes, as these
are important and rather challenging. The cooperation among processes can
sometimes be modeled as a distributed agreement problem. For instance, the
processes may need to agree on whether a certain event did (or did not) take
place, to agree on a common sequence of actions to be performed (from a
number of initial alternatives), or to agree on the order by which a set of
inputs need to be processed. It is desirable to establish more sophisticated
forms of agreement from solutions to simpler agreement problems, in an in-
cremental manner. Consider, for instance, the following situations:

4 1. Introduction

• In order for processes to be able to exchange information, they must ini-
tially agree on who they are (say, using IP addresses) and on some common
format for representing messages. They may also need to agree on some
reliable way of exchanging messages (say, to provide TCP-like1 semantics).

• After exchanging some messages, the processes may be faced with several
alternative plans of action. They may then need to reach a consensus on
a common plan, out of several alternatives, and each participating pro-
cess may have initially its own plan, different from the plans of the other
processes.

• In some cases, it may be acceptable for the cooperating processes to take a
given step only if all other processes also agree that such a step should take
place. If this condition is not met, all processes must agree that the step
should not take place. This form of agreement is crucial in the processing
of distributed transactions, where this problem is known as the atomic
commitment problem.

• Processes may need not only to agree on which actions they should execute
but to agree also on the order in which these actions need to be executed.
This form of agreement is the basis of one of the most fundamental tech-
niques to replicate computation in order to achieve fault tolerance, and it
is called the total order broadcast problem.

This book is about mastering the difficulty underlying these problems, and
devising abstractions that encapsulate such problems. In the following, we try
to motivate the relevance of some of the abstractions covered in this book.
We distinguish the case where the abstractions pop up from the natural
distribution of the abstraction from the case where these abstractions come
out as artifacts of an engineering choice for distribution.

1.2.1 Inherent Distribution

Applications which require sharing or dissemination of information among
several participant processes are fertile for the emergence of distributed pro-
gramming abstractions. Examples of such applications are information dis-
semination engines, multiuser cooperative systems, distributed shared spaces,
cooperative editors, process control systems, and distributed databases.

Information Dissemination. In distributed applications with information
dissemination requirements, processes may play one of the following roles:
information producers, also called publishers, or information consumers, also
called subscribers. The resulting interaction paradigm is often called publish-
subscribe.

Publishers produce information in the form of notifications. Subscribers
register their interest in receiving certain notifications. Different variants of

1 Transmission Control Protocol, one of the main transport protocols used in the
Internet (Postel 1981).

1.2 Abstractions 5

the publish-subscribe paradigm exist to match the information being pro-
duced with the subscribers’ interests, including channel-based, subject-based,
content-based, or type-based subscriptions. Independently of the subscription
method, it is very likely that several subscribers are interested in the same
notifications, which will then have to be multicast. In this case, we are typ-
ically interested in having subscribers of the same information receive the
same set of messages. Otherwise the system will provide an unfair service,
as some subscribers could have access to a lot more information than other
subscribers.

Unless this reliability property is given for free by the underlying infras-
tructure (and this is usually not the case), the sender and the subscribers
may need to coordinate to agree on which messages should be delivered.
For instance, with the dissemination of an audio stream, processes are typ-
ically interested in receiving most of the information but are able to toler-
ate a bounded amount of message loss, especially if this allows the system
to achieve a better throughput. The corresponding abstraction is typically
called a best-effort broadcast.

The dissemination of some stock exchange information may require a
more reliable form of broadcast, called reliable broadcast, as we would like
all active processes to receive the same information. One might even require
from a stock exchange infrastructure that information be disseminated in
an ordered manner. In several publish-subscribe applications, producers and
consumers interact indirectly, with the support of a group of intermediate
cooperative brokers. In such cases, agreement abstractions may be useful for
the cooperation among the brokers.

Process Control. Process control applications are those where several soft-
ware processes have to control the execution of a physical activity. Basically,
the (software) processes might be controlling the dynamic location of an air-
craft or a train. They might also be controlling the temperature of a nuclear
installation, or the automation of a car production system.

Typically, every process is connected to some sensor. The processes might,
for instance, need to exchange the values output by their assigned sensors and
output some common value, say, print a single location of the aircraft on the
pilot control screen, despite the fact that, due to the inaccuracy or failure
of their local sensors, they may have observed slightly different input val-
ues. This cooperation should be achieved despite some sensors (or associated
control processes) having crashed or not observed anything. This type of co-
operation can be simplified if all processes agree on the same set of inputs for
the control algorithm, a requirement captured by the consensus abstraction.

Cooperative Work. Users located on different nodes of a network may co-
operate in building a common software or document, or simply in setting
up a distributed dialogue, say, for a virtual conference. A shared working
space abstraction is very useful here to enable effective cooperation. Such
distributed shared memory abstraction is typically accessed through read

6 1. Introduction

and write operations that the users exploit to store and exchange informa-
tion. In its simplest form, a shared working space can be viewed as a virtual
(distributed) register or a distributed file system. To maintain a consistent
view of the shared space, the processes need to agree on the relative order
among write and read operations on that shared board.

Distributed Databases. These constitute another class of applications
where agreement abstractions can be helpful to ensure that all transaction
managers obtain a consistent view of the running transactions and can make
consistent decisions on the way these transactions are serialized.

Additionally, such abstractions can be used to coordinate the transaction
managers when deciding about the outcome of the transactions. That is, the
database servers on which a given distributed transaction has executed would
need to coordinate their activities and decide on whether to commit or abort
the transaction. They might decide to abort the transaction if any database
server detected a violation of the database integrity, a concurrency control
inconsistency, a disk error, or simply the crash of some other database server.
As we pointed out, a distributed programming abstraction that is useful here
is the atomic commit (or commitment) form of distributed cooperation.

1.2.2 Distribution as an Artifact

In general, even if the application is not inherently distributed and may not,
at first glance, need sophisticated distributed programming abstractions. This
need sometimes appears as an artifact of the engineering solution to satisfy
some specific requirements such as fault tolerance, load balancing, or fast
sharing.

We illustrate this idea through state-machine replication, which is a pow-
erful way to achieve fault tolerance in distributed systems. Briefly, replication
consists in making a centralized service highly available by executing several
copies of it on several machines that are presumably supposed to fail in-
dependently. The service continuity is in a sense ensured despite the crash
of a subset of the machines. No specific hardware is needed: fault tolerance
through replication is software based. In fact, replication may also be used
within an information system to improve the read access performance to data
by placing it close to the processes where it is supposed to be queried.

For replication to be effective, the different copies must be maintained
in a consistent state. If the state of the replicas diverge arbitrarily, it does
not make sense to talk about replication. The illusion of one highly available
service would fall apart and be replaced by that of several distributed ser-
vices, each possibly failing independently. If replicas are deterministic, one of
the simplest ways to guarantee full consistency is to ensure that all replicas
receive the same set of requests in the same order. Typically, such guaran-
tees are enforced by an abstraction called total order broadcast: the processes
need to agree here on the sequence of messages they deliver. Algorithms that

1.3 The End-to-End Argument 7

implement such a primitive are nontrivial, and providing the programmer
with an abstraction that encapsulates these algorithms makes the design of
replicated service easier. If replicas are nondeterministic, then ensuring their
consistency requires different ordering abstractions, as we will see later in the
book.

1.3 The End-to-End Argument

Distributed programming abstractions are useful but may sometimes be dif-
ficult or expensive to implement. In some cases, no simple algorithm is able
to provide the desired abstraction and the algorithm that solves the problem
can have a high complexity, e.g., in terms of the number of interprocess com-
munication steps and messages. Therefore, depending on the system model,
the network characteristics, and the required quality of service, the overhead
of the abstraction can range from the negligible to the almost impairing.

Faced with performance constraints, the application designer may be
driven to mix the relevant logic of the abstraction with the application logic,
in an attempt to obtain an optimized integrated solution. The rationale for
this would be that such a solution should perform better than a solution
derived through a modular approach, where the abstraction is implemented
as independent services that can be accessed through well-defined interfaces.
The approach can be further supported by a superficial interpretation of the
end-to-end argument: most complexity should be implemented at the higher
levels of the communication stack. This argument could be applied to any
form of (distributed) programming.

However, even if, in some cases, performance gains can be obtained by
collapsing the application and the underlying layers, such an approach has
many disadvantages. First, it is very error prone. Some of the algorithms that
will be presented in this book have a considerable amount of difficulty and
exhibit subtle dependencies among their internal elements. An apparently
obvious “optimization” may break the algorithm correctness. It is in order
to quote Knuth here:

“Premature optimization is the source of all evil.”

Even if the designer reaches the amount of expertise required to master the
difficult task of embedding these algorithms in the application, there are
several other reasons to keep both implementations independent. The most
important of these reasons is that there is usually no single solution for a given
distributed computing problem. This is particularly true because of the va-
riety of distributed system models. Instead, different solutions can usually
be proposed and none of these solutions may strictly be superior to the oth-
ers: each may have its own advantages and disadvantages, performing better
under different network or load conditions, making different trade-offs be-
tween network traffic and message latency, and so on. Relying on a modular

8 1. Introduction

approach allows the most suitable implementation to be selected when the
application is deployed, or even allows commuting at runtime among differ-
ent implementations in response to changes in the operational envelope of
the application.

Encapsulating tricky issues of distributed interactions within abstractions
with well-defined interfaces significantly helps us reason about the correctness
of the application, and port it from one system to the other. We strongly
believe that, in many distributed applications, especially those that require
many-to-many interaction, building preliminary prototypes of the distributed
application using several abstraction layers can be very helpful.

Ultimately, one may indeed consider optimizing the performance of the
final release of a distributed application and using some integrated prototype
that implements several abstractions in one monolithic piece of code. How-
ever, full understanding of each of the enclosed abstractions in isolation is
fundamental to ensure the correctness of the combined code.

1.4 Software Components

1.4.1 Composition Model

Notation. One of the biggest difficulties we had to face when thinking about
describing distributed algorithms was to find out an adequate way to repre-
sent these algorithms. When representing a centralized algorithm, one could
decide to use a programming language, either by choosing an existing popular
one, or by inventing a new one with pedagogical purposes in mind.

Although there have indeed been several attempts to come up with dis-
tributed programming languages, these attempts have resulted in rather
complicated notations that would not have been viable to describe general-
purpose distributed algorithms in a pedagogical way. Trying to invent a dis-
tributed programming language was not an option. Had we the time to invent
one successfully, at least one book would have been required to present the
language itself.

Therefore, we have opted to use pseudo code to describe our algorithms.
The pseudo code reflects a reactive computing model where components of the
same process communicate by exchanging events: an algorithm is described
as a set of event handlers. These react to incoming events and possibly trig-
ger new events. In fact, the pseudo code is very close to the actual way we
programmed the algorithms in our experimental framework. Basically, the
algorithm description can be seen as actual code, from which we removed
all implementation-related details that were more confusing than useful for
understanding the algorithms. This approach hopefully simplifies the task of
those who will be interested in building running prototypes from the descrip-
tions found in this book.

1.4 Software Components 9

Component B

Events

Events

Events

Component A

Fig. 1.1: Composition model

A Simple Example. Abstractions are typically represented through Ap-
plication Programming Interfaces (API). We will informally discuss here a
simple example API for a distributed programming abstraction.

To describe this API in particular, and our APIs in general, as well as the
algorithms implementing these APIs, we shall consider, throughout the book,
an asynchronous event-based composition model. Every process hosts a set
of software modules, called components in our context. Each component is
identified by a name, and characterized by a set of properties. The component
provides an interface in the form of the events that the component accepts
and produces in return. Distributed programming abstractions are typically
made of a collection of components, at least one for every process, that are
intended to satisfy some common properties.

Software Stacks. Components can be composed to build software stacks.
At each process, a component represents a specific layer in the stack. The
application layer is at the top of the stack whereas the networking layer is
at the bottom. The layers of the distributed programming abstractions we
will consider are typically in the middle. Components within the same stack
communicate through the exchange of events , as illustrated in Figure 1.1.
A given abstraction is typically materialized by a set of components, each
running at a process.

According to this model, each component is constructed as a state-
machine whose transitions are triggered by the reception of events. Events
may carry information such as a data message, or a group membership infor-
mation, in one or more attributes . Events are denoted by 〈 EventType | att1,
att2, . . . 〉.

Each event is processed through a dedicated handler by the process (i.e.,
by the corresponding component). The processing of an event may result
in new events being created and triggering the same or different compo-

10 1. Introduction

nents. Every event triggered by a component of the same process is eventu-
ally processed, unless the process crashes. Events from the same component
are processed in the order in which they were triggered. Note that this FIFO
(first-in-first-out) order is only enforced on events exchanged among local
components in a given stack. The messages among different processes may
also need to be ordered according to some criteria, using mechanisms orthog-
onal to this one. We shall address this interprocess communication issue later
in the book.

We assume that every process executes the code triggered by events in
a mutually exclusive way. Basically, the same process does not handle two
events concurrently. Once the handling of an event is terminated, the process
keeps on checking if any other event is triggered. This periodic checking is
assumed to be fair, and is achieved in an implicit way: it is not visible in the
pseudo code we describe.

The code of each component looks like this:

upon event 〈 Event1 | att11, att21, . . . 〉 do
something
trigger 〈 Event2 | att12,att22, . . . 〉; // send some event

upon event 〈 Event3 | att13, att23, . . . 〉 do
something else
trigger 〈 Event4 | att14, att24, . . . 〉; // send some other event

This decoupled and asynchronous way of interacting among components
matches very well the requirements of distributed applications: for instance,
new processes may join or leave the distributed system at any moment and
a process must be ready to handle both membership changes and reception
of messages at any time. Hence, the order in which events will be observed
cannot be defined a priori ; this is precisely what we capture through our
component model.

1.4.2 Programming Interface

A typical interface includes the following types of events:

• Request events are used by a component to request a service from another
component: for instance, the application layer might trigger a request event
at a component in charge of broadcasting a message to a set of processes in
a group with some reliability guarantee, or proposing a value to be decided
on by the group.

• Confirmation events are used by a component to confirm the completion of
a request. Typically, the component in charge of implementing a broadcast

1.4 Software Components 11

will confirm to the application layer that the message was indeed broadcast
or that the value suggested has indeed been proposed to the group: the
component uses here a confirmation event. Note that this is different from
the actual delivery of the event to the application, as we discuss below.

• Indication events are used by a given component to deliver information
to another component. Considering the broadcast example above, at every
process that is a destination of the message, the component in charge of
implementing the actual broadcast primitive will typically perform some
processing to ensure the corresponding reliability guarantee, and then use
an indication event to deliver the message to the application layer. Simi-
larly, the decision on a value will be indicated with such an event.

A typical execution at a given layer consists of the following sequence of
actions. We consider here the case of a broadcast kind of abstraction, e.g.,
the processes need to agree on whether or not to deliver a message broadcast
by some process.

1. The execution is initiated by the reception of a request event from the
layer above.

2. To ensure the properties of the broadcast abstraction, the layer will send
one or more messages to its remote peers using the services of the layer
below (using request events).

3. Messages sent by the peer layers are also received using the services of
the underlying layer (through indication events).

4. When a message is received, it may have to be stored temporarily until
the adequate reliability property is satisfied, before being delivered to the
layer above (using an indication event).

This dataflow is illustrated in Figure 1.2. Events used to deliver information
to the layer above are indications. In some cases, the layer may confirm that
a service has been concluded using a specialized indication event, therefore
called a confirmation event.

1.4.3 Modules

Not surprisingly, the modules described in this book perform some interaction
with the correspondent modules on peer processes: after all, this is a book
about distributed computing. It is, however, also possible to have modules
that perform only local actions.

To illustrate the notion of modules, we use the example of a simple print-
ing module. This module receives a print request, issues a print command,
and then provides a confirmation of the print operation having been achieved.
Module 1.1 describes its interface and Algorithm 1.1 is a straightforward im-
plementation of it. The algorithm is to be executed by every process pi.

12 1. Introduction

(receive)

(deliver)

indicationrequest

request indication

Layer n−1

Layer n+1

Layer n

Fig. 1.2: Layering

Module 1.1 Interface of a printing module

Module:

Name: Print.

Events:

Request: 〈 PrintRequest | rqid, str 〉: Requests a string to be printed. The
token rqid is an identifier of the request.

Confirmation:〈 PrintConfirm | rqid 〉: Used to confirm that the printing
request with identifier rqid succeeded.

Algorithm 1.1 Printing service

Implements:
Print.

upon event 〈 PrintRequest | rqid, str 〉 do
print str;
trigger 〈 PrintConfirm | rqid 〉;

To illustrate the way modules are composed, we use the printing module
above to build a bounded printing service. The bounded printer only ac-
cepts a limited, predefined number of printing requests. The bounded printer
also generates an indication when the threshold of allowed print requests is
reached. The bounded printer uses the service of the (unbounded) printer
introduced above and maintains a counter to keep track of the number of
printing requests executed in the past. Module 1.2 provides the interface of
the bounded printer and Algorithm 1.2 its implementation. The composition
of the two modules is illustrated in Figure 1.3.

1.4 Software Components 13

Module BoundedPrint

Request: PrintRequest

Module Print

Confirmation: PrintConfirm

Confirmaton: PrintStatus Indication: PrintAlarm

Request: BoundedPrintRequest

Fig. 1.3: A stack of printing modules

Module 1.2 Interface of a bounded printing module

Module:

Name: BoundedPrint.

Events:

Request: 〈 BoundedPrintRequest | rqid, str 〉: Request a string to be
printed. The token rqid is an identifier of the request.

Confirmation:〈 PrintStatus | rqid, status 〉: Used to return the outcome
of the printing request: Ok or Nok.

Indication:〈 PrintAlarm 〉: Used to indicate that the threshold was
reached.

To make explicit the process of initializing the components, we assume
that a special 〈 Init 〉 event is generated automatically by the runtime system
when a component is created. This event is used to perform the initialization
of the component. For instance, in the bounded printer example, this event
is used to initialize the counter of executed printing requests.

1.4.4 Classes of Algorithms

As noted above, in order to provide a given service, a layer at a given process
may need to execute one or more rounds of message exchange with the peer
layers at remote processes. The behavior of each peer, characterized by the
set of messages that it is capable of producing and accepting, the format of
each of these messages, and the legal sequences of messages, is sometimes
called a protocol . The purpose of the protocol is to ensure the execution of
some distributed algorithm, the concurrent execution of different sequences
of steps that ensure the provision of the desired service. This book covers
several of these distributed algorithms.

To give the reader an insight into how design solutions and system-related
parameters affect the algorithm design, this book includes five different classes
of algorithmic solutions to implement our distributed programming abstrac-
tions, namely:

14 1. Introduction

Algorithm 1.2 Bounded printer based on (unbounded) printing service

Implements:
BoundedPrint.

Uses:
Print.

upon event 〈 Init 〉 do
bound := PredefinedThreshold;

upon event 〈 BoundedPrintRequest | rqid, str 〉 do
if bound > 0 then

bound := bound-1;
trigger 〈 PrintRequest | rqid, str 〉;
if bound = 0 then trigger 〈 PrintAlarm 〉;

else
trigger 〈 PrintStatus | rqid, Nok 〉;

upon event 〈 PrintConfirm | rqid 〉 do
trigger 〈 PrintStatus | rqid, Ok 〉;

i. fail-stop algorithms, designed under the assumption that processes can
fail by crashing but the crashes can be reliably detected by all the other
processes;

ii. fail-silent algorithms, where process crashes can never be reliably de-
tected;

iii. fail-noisy algorithms, where processes can fail by crashing and the crashes
can be detected, but not always in an accurate manner (accuracy is only
eventual);

iv. fail-recovery algorithms, where processes can crash and later recover and
still participate in the algorithm; and

v. randomized algorithms, where processes use randomization to ensure the
properties of the abstraction with some known probability.

These classes are not disjoint and it is important to notice that we do not
give a solution from each class for every abstraction. First, there are cases
where it is known that some abstraction cannot be implemented from an al-
gorithm of a given class. For example, some of the coordination abstractions
we consider in Chapter 7 do not have fail-noisy (and hence fail-silent) solu-
tions and it is not clear how to devise meaningful randomized solutions to
such abstractions. In other cases, such solutions may exist but devising them
is still an active area of research.

Reasoning about distributed algorithms in general, and in particular
about algorithms that implement distributed programming abstractions, first
involves defining a clear model of the distributed system where these algo-
rithms are supposed to operate. Put differently, we need to figure out what

1.5 Hands-On 15

basic abstractions the processes assume in order to build more sophisticated
ones. The basic abstractions we consider capture the allowable behavior of
the processes and their communication links in the distributed system. Before
delving into concrete algorithms to build sophisticated distributed program-
ming abstractions, we thus need to understand such basic abstractions. This
will be the topic of the next chapter.

1.5 Hands-On

Several of the algorithms that we will be presenting in the book have been
implemented and made available as open source code. By using these imple-
mentations, the reader has the opportunity to run and experiment with the
algorithms in a real setting, review the code, make changes and improvements
to it and, eventually, take it as a basis to implement her own algorithms. Note
that, when referring to the implementation of an algorithm, we will mainly
use the word protocol . As noted before, the protocol describes not only the
behavior of each participant but also the concrete format of the messages
exchanged among participants.

The algorithms have been implemented in the Java programming language
with the support of the Appia protocol composition and execution frame-
work (Miranda, Pinto, and Rodrigues 2001). Appia is a tool that simplifies
the development of communication protocols. To start with, Appia already
implements a number of basic services that are required in several protocols,
such as methods to add and extract headers from messages or launch timers:
these are the sort of implementation details that may require the writing of a
considerable number of lines of code when appropriate libraries are not avail-
able. Additionally, Appia simplifies the task of composing different protocol
modules.

Central to the use of Appia is the notion of protocol composition. In its
simpler form, a protocol composition is a stack of instances of the Layer class.
For each different protocol module, a different specialization of the Layer class
should be defined. In Appia, multiple instances of a given protocol compo-
sition may be created in run-time. Each instance is called a channel, as it
is materialized as a stack of objects of the Session class. In Appia, modules
communicate through the exchange of events. Appia defines the class Event,
from which all events exchanged in the Appia framework must be derived.
In order for a module to consume and produce events, a layer must explic-
itly declare the set of events accepted, provided, and required. When a layer
requires an event, Appia checks if there is another layer in the composition
that provides that event; if not, it generates an exception. This offers a simple
way of detecting inconsistencies in the protocol composition.

At this point, it is probably useful to clarify the mapping between the
abstract descriptions provided in the book and the corresponding concrete
implementation in the Appia framework.

16 1. Introduction

• While in the book we use pseudo code to describe the algorithms, in Appia
the Java programming language is used to implement them.

• In the book we use the module concept to characterize the interface of a
service. In the Appia implementation this interface is captured in the Layer

class. The Requests accepted by the module are listed as accepted events.
The Indications and Confirmations (if any) provided by the module are
listed as provided events.

• Typically, there is a projection of the pseudo code that appears in an
algorithm and the Java code of the corresponding Session class.

1.5.1 Print Module

Consider, for instance, the implementation of the Print module (Module 1.1).
First, we define the events accepted and provided by this module. This is
illustrated in Listing 1.1.

Listing 1.1. Events for the Print module

package appia.protocols.tutorialDA.print;

public class PrintRequestEvent extends Event {
int rqid;
String str ;

void setId(int rid);
void setString(String s);
int getId();
String getString ();

}

public class PrintConfirmEvent extends Event {
int rqid;

void setId(int rid);
int getId();

}

Then, we implement the layer for this module. This is illustrated in List-
ing 1.2. As expected, the layer accepts the PrintRequestEvent and provides
the PrintConfirmEvent. The PrintLayer is also responsible for creating objects of
class PrintSession, whose purpose is described in the next paragraphs.

Listing 1.2. PrintLayer

package appia.protocols.tutorialDA.print;

public class PrintLayer extends Layer {

public PrintLayer(){
/∗ events that the protocol will create ∗/
evProvide = new Class[1];
evProvide[0] = PrintConfirmEvent.class;

/∗ events that the protocol requires to work. This is
∗ a subset of the accepted events ∗/

evRequire = new Class[0];

1.5 Hands-On 17

/∗ events that the protocol will accept ∗/
evAccept = new Class[2];
evAccept[0] = PrintRequestEvent.class;
evAccept[1] = ChannelInit.class;

}

public Session createSession() {
return new PrintSession(this);

}

}

Layers are used to describe the behavior of each module. The actual meth-
ods and the state required by the algorithm is maintained by Session objects.
Thus, for every layer, the programmer needs to define the corresponding ses-
sion. The main method of a session is the handle method, invoked by the
Appia kernel whenever there is an event to be processed by the session. For
the case of our Print module, the implementation of the PrintSession is given
in Listing 1.3.

Listing 1.3. PrintSession

package appia.protocols.tutorialDA.print;

public class PrintSession extends Session {

public PrintSession(Layer layer) {
super(layer);

}

public void handle(Event event){
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit)event);
else if (event instanceof PrintRequestEvent){

handlePrintRequest ((PrintRequestEvent)event);
}

}

private void handleChannelInit(ChannelInit init) {
try {

init .go();
} catch (AppiaEventException e) {

e.printStackTrace();
}

}

private void handlePrintRequest(PrintRequestEvent request) {
try {

PrintConfirmEvent ack = new PrintConfirmEvent ();

doPrint (request.getString ());
request.go();

ack.setChannel(request.getChannel());
ack.setDir(Direction.UP);
ack.setSource(this);
ack.setId(request.getId ());
ack. init ();
ack.go();

} catch (AppiaEventException e) {
e.printStackTrace();

18 1. Introduction

}
}

}

There are a couple of issues the reader should note in the previous code.
First, as in most of our algorithms, every session should be ready to accept
the ChannelInit event. This event is automatically generated and should be
used to initialize the session state. Second, in Appia, the default behavior for
a session is to always to move forward downward (or upward) in the stack the
events it consumes. As it will become clear later in the book, it is often very
convenient to have the same event processed by different sessions in sequence.

1.5.2 BoundedPrint Module

Having defined the events, the layer, and the session for the Print module, we
can now perform a similar job for the BoundedPrint module (Module 1.2). As
before, we start by providing the required events, as depicted in Listing 1.4.
Note that we define the PrintAlarmEvent and the PrintStatusEvent.

We now use the opportunity to reinforce a very important feature of
Appia. In Appia, the same event may be processed by several sessions in
sequence. Therefore, Appia programmers avoid renaming events when they
perform similar functions in different layers. In this case, instead of creat-
ing a new event BoundedPrintRequestEvent, that would have to be renamed
PrintRequestEvent when propagated from the BoundedPrintLayer to the Print-

Layer, we simply use the same event, PrintRequestEvent, in both layers. The
order in which this event is processed (i.e, the fact that it is first processed
by the BoundedPrintLayer and afterward by the PrintLayer) is defined by the
composition of the stack, when the Appia QoS is declared.

Listing 1.4. Events for the BoundedPrint module

package appia.protocols.tutorialDA.print;

class PrintAlarmEvent extends Event {
}

class PrintStatusEvent extends Event {
int r id ;
Status stat ;

void setId (int rid);
void setStatus (Status s);
int getId ();
int getStatus ();

}

We proceed to define the BoundedPrintLayer, as depicted in Listing 1.5.
Since the BoundedPrint module uses the services of the basic Print module,
it requires the PrintConfirmEvent produced by that module.

1.5 Hands-On 19

Listing 1.5. Bounded PrintLayer

package appia.protocols.tutorialDA.print;

public class BoundedPrintLayer extends Layer {

public BoundedPrintLayer(){
/∗ events that the protocol will create ∗/
evProvide = new Class[2];
evProvide[0] = PrintStatusEvent.class;
evProvide[1] = PrintAlarmEvent.class;

/∗ events that the protocol require to work.
∗ This is a subset of the accepted events ∗/

evRequire = new Class[1];
evRequire[0] = PrintConfirmEvent.class;

/∗ events that the protocol will accept ∗/
evAccept = new Class[3];
evAccept[0] = PrintRequestEvent.class;
evAccept[1] = PrintConfirmEvent.class;
evAccept[2] = ChannelInit.class;

}

public Session createSession() {
return new BoundedPrintSession(this);

}

}

Subsequently, we can implement the session for the BoundedPrint module,
depicted in Listing 1.6.

Listing 1.6. BoundedPrintSession

package appia.protocols.tutorialDA.print;

public class BoundedPrintSession extends Session {
int bound;

public BoundedPrintSession(Layer layer) {
super(layer);

}

public void handle(Event event){
if (event instanceof ChannelInit) {

handleChannelInit((ChannelInit)event);
}
else if (event instanceof PrintRequestEvent) {

handlePrintRequest ((PrintRequestEvent)event);
}
else if (event instanceof PrintConfirmEvent) {

handlePrintConfirm ((PrintConfirmEvent)event);
}

}

private void handleChannelInit(ChannelInit init) {
try {

bound = PredefinedThreshold;

init .go();
} catch (AppiaEventException e) {

e.printStackTrace();
}

}

20 1. Introduction

private void handlePrintRequest(PrintRequestEvent request) {
if (bound > 0){

bound = bound −1;
try {

request.go ();
} catch (AppiaEventException e) {

e.printStackTrace();
}
if (bound == 0) {

PrintAlarmEvent alarm = new PrintAlarmEvent ();
alarm.setChannel (request.getChannel());
alarm.setSource (this);
alarm.setDir(Direction.UP);
try {

alarm.init ();
alarm.go ();

} catch (AppiaEventException e) {
e.printStackTrace();

}
}

}
else {

PrintStatusEvent status = new PrintStatusEvent ();
status .setChannel (request.getChannel());
status .setSource (this);
status .setDir(Direction.UP);
status . setId (request.getId ());
status .setStatus (Status.NOK);
try {

status . init ();
status .go ();

} catch (AppiaEventException e) {
e.printStackTrace();

}
}

}

private void handlePrintConfirm(PrintConfirmEvent conf) {
PrintStatusEvent status = new PrintStatusEvent ();
status .setChannel (request.getChannel());
status .setSource (this);
status .setDir(Direction.UP);
status . setId (conf.getId ());
status .setStatus (Status.OK);
try {

status . init ();
status .go ();

} catch (AppiaEventException e) {
e.printStackTrace();

}
}

}

1.5.3 Composing Modules

The two modules that we have described can now be easily composed using
the Appia framework. The first step consists in creating a protocol compo-
sition by stacking the BoundedPrintLayer on top of the PrintLayer. Actually, in
order to be able to experiment with these two layers, we further add on top

1.5 Hands-On 21

Channel

Layers

CreateChannel

createSession()

createSession()

createSession()

Sessions

QoS

PrintSession

PrintSession

BoundedPrintSession

PrintApplSession

PrintLayer

BoundedPrintSession

BoundedPrintLayer

PrintApplLayer

PrintLayer

BoundedPrintLayer

PrintApplLayer

PrintApplSession

Fig. 1.4: Layers, Sessions, QoS and Channels

of the stack a simple application layer, named PrintApplicationLayer. This is
a simple layer, that listens for strings on standard input, creates and sends
a print request with those strings, and displays the confirmation and status
events received.

A composition of layers in Appia is called a QoS (Quality of Service) and
can simply be created by providing the desired array of layers, as shown in
Listing 1.7. After defining a protocol composition, it is possible to create
one or more communication channels that use that composition. Therefore,
channels can be seen as instances of protocol compositions. Channels are
made of sessions. When a channel is created from a composition, it is possible
to automatically create a new session for every layer in the composition.
The relation between Layers, Sessions, QoS, and Channels is illustrated in
Figure 1.4. The code required to create a channel is depicted in Listing 1.7.

Listing 1.7. Creating a PrintChannel

package appia.protocols.tutorialDA.print;

public class Example {

public static void main(String[] args) {
/∗ Create layers and put them in a array ∗/
Layer [] qos =

{new PrintLayer(),
new BoundedPrintLayer(),
new PrintApplicationLayer()};

/∗ Create a QoS ∗/

22 1. Introduction

QoS myQoS = null;
try {

myQoS = new QoS(”Print stack”, qos);
} catch (AppiaInvalidQoSException ex) {

System.err.println(”Invalid QoS”);
System.err.println(ex.getMessage());
System.exit(1);

}

/∗ Create a channel. Uses default event scheduler. ∗/
Channel channel = myQoS.createUnboundChannel(”Print Channel”);

try {
channel.start ();

} catch(AppiaDuplicatedSessionsException ex) {
System.err.println(”Error in start”);
System.exit(1);

}

/∗ All set . Appia main class will handle the rest ∗/
System.out.println(”Starting Appia...”);
Appia.run();

}
}

The reader is now invited to install the Appia distribution provided as a
companion of this book and try the implementations described above.

Try It To test the Print and BoundedPrint implementations, use the Example

class, located in the demo.tutorialDA package.
To run a simple test, execute the following steps:

1. Open a shell/command prompt.
2. In the shell go to the directory where you have placed the supplied code.
3. Launch the test application:

java demo/tutorialDA/Example

Note: If the error NoClassDefError has appeared, confirm that you are
at the root of the supplied code.

In the output displayed, each line starts with the name of the layer that
is writing the output. The PrintApplication layer displays the identification of
the next print request between parentheses. After you press the Enter key,
that identification applies to the last typed text.

Now that the process is launched and running, you may try the following
execution:

1. Type the text adieu (print request 1).
• Note that Ok status was received for this text.

2. Type the text goodbye (print request 2).
• Note that Ok status was received for this text.

3. Type the text adios (print request 3).
• Note that Ok status was received for this text.

4. Type the text sayonara (print request 4).

1.5 Hands-On 23

• Note that Ok status was received for this text.
5. Type the text adeus (print request 5).

• Note that an ALARM notification was received because the limit of
the BoundedPrint layer, predefined value of 5, was reached.

• Nevertheless an Ok status was received for this text.
6. Any further typed text will receive a Not Ok status.

2. Basic Abstractions

These are my principles. If you don’t like them, I have others.
(Groucho Marx)

Applications that are deployed in practical distributed systems are usually
composed of a myriad of different machines and communication infrastruc-
tures. Physical machines differ on the number of processors, type of proces-
sors, amount and speed of both volatile and persistent memory, and so on.
Communication infrastructures differ on parameters such as latency, through-
put, reliability, etc. On top of these machines and infrastructures, a huge vari-
ety of software components are sometimes encompassed by the same applica-
tion: operating systems, file systems, middleware, communication protocols,
each component with its own specific features.

One might consider implementing distributed services that are tailored
to specific combinations of the elements listed above. Such implementations
would depend on one type of machine, one form of communication, one dis-
tributed operating system, and so on. However, in this book, we are interested
in studying abstractions and algorithms that are relevant for a wide range
of distributed environments. In order to achieve this goal we need to capture
the fundamental characteristics of various distributed systems in some basic
abstractions, on top of which we can later define other more elaborate, and
generic, distributed programming abstractions.

This chapter presents the basic abstractions we use to model a distributed
system composed of computational entities (processes) communicating by
exchanging messages.

Two kinds of abstractions will be of primary importance: those represent-
ing processes and those representing communication links. Not surprisingly, it
does not seem to be possible to model the huge diversity of physical networks
and operational conditions with a single process abstraction and a single link
abstraction. Therefore, we will define different instances for each kind of basic

26 2. Basic Abstractions

abstraction. For instance, we will distinguish process abstractions according
to the types of faults that they may exhibit.

Besides our process and link abstractions, we will introduce the failure
detector abstraction as a convenient way to capture assumptions that might
be reasonable to make on the timing behavior of processes and links. Later in
the chapter we will identify relevant combinations of our three categories of
abstractions. Such a combination is what we call a distributed system model.

This chapter also contains our first module descriptions, used to specify
our basic abstractions, as well as our first algorithms, used to implement these
abstractions. The specifications and the algorithms are rather simple and
should help illustrate our notation, before proceeding in subsequent chapters
to more sophisticated specifications and algorithms.

2.1 Distributed Computation

2.1.1 Processes and Messages

We abstract the units that are able to perform computations in a distributed
system through the notion of process . We consider that the system is com-
posed of N uniquely identified processes, denoted by p1, p2, . . . , pN . Some-
times we also denote the processes by p, q, r. The set of system processes is
denoted by Π . Unless explicitly stated otherwise, it is assumed that this set
is static (does not change) and processes do know of each other. Typically,
we will assume that all processes of the system run the same local algorithm.
The sum of these copies constitutes the actual distributed algorithm.

We do not assume any particular mapping of our abstract notion of pro-
cess to the actual processors, processes, or threads of a specific computer
machine or operating system. The processes communicate by exchanging mes-
sages and the messages are uniquely identified, say, by their original sender
process using a sequence number or a local clock, together with the process
identifier. Messages are exchanged by the processes through communication
links. We will capture the properties of the links that connect the processes
through specific link abstractions, which we will discuss later.

2.1.2 Automata and Steps

A distributed algorithm is viewed as a collection of distributed automata,
one per process. The automaton at a process regulates the way the process
executes its computation steps, i.e., how it reacts to a message. The execution
of a distributed algorithm is represented by a sequence of steps executed by
the processes. The elements of the sequences are the steps executed by the
processes involved in the algorithm. A partial execution of the algorithm is
represented by a finite sequence of steps; an infinite execution by an infinite
sequence of steps.

2.1 Distributed Computation 27

Process

(receive)

incoming message outgoing message

(send)

internal computation

(modules of the process)

Fig. 2.1: Step of a process

It is convenient for presentation simplicity to assume the existence of a
global clock, outside the control of the processes. This clock provides a global
and linear notion of time that regulates the execution of the algorithms. The
steps of the processes are executed according to ticks of the global clock:
one step per clock tick. Even if two steps are executed at the same physical
instant, we view them as if they were executed at two different times of our
global clock. A correct process executes an infinite number of steps, i.e., every
process has an infinite share of time units (we come back to this notion in
the next section). In a sense, there is some entity, sometimes called a global
scheduler, that schedules time units among processes, though the very notion
of time is outside the control of the processes.

A process step consists in receiving (sometimes we will be saying deliver-
ing) a message from another process (global event), executing a local com-
putation (local event), and sending a message to some process (global event)
(Figure 2.1). The execution of the local computation and the sending of a
message is determined by the process automaton, i.e., the algorithm. Local
events that are generated are typically those exchanged between modules of
the same process at different layers.

The fact that a process has no message to receive or send, but has some
local computation to perform, is simply captured by assuming that messages
might be nil, i.e., the process receives/sends the nil message. Of course, a
process might not have any local computation to perform either, in which
case it does simply not touch any of its local variables. In this case, the local
computation is also nil.

It is important to notice that the interaction between local components
of the very same process is viewed as a local computation and not as a
communication. We will not be talking about messages exchanged between
modules of the same process. The process is the unit of communication, just
like it is the unit of failures, as we will discuss. In short, a communication step
of the algorithm occurs when a process sends a message to another process,
and the latter receives this message. The number of communication steps
reflects the latency an implementation exhibits, since the network latency is
typically a limiting factor of the performance of distributed algorithms.

28 2. Basic Abstractions

An important parameter of the process abstraction is the restriction im-
posed on the speed at which local steps are performed and messages are
exchanged. We will come back to this aspect when discussing timing assump-
tions later in this chapter.

Unless specified otherwise, we will consider deterministic algorithms. That
is, for every step performed by any given process, the local computation
executed by the process and the message sent by this process are uniquely
determined by the message received by the process and its local state prior
to executing the step.

In specific situations, we will also discuss randomized (or probabilistic)
algorithms where processes make use of underlying random oracles to choose
the local computation to be performed or the next message to be sent, from
a set of possibilities.

2.1.3 Liveness and Safety

When we devise a distributed algorithm to implement a given distributed
programming abstraction, we seek to satisfy the properties of the abstraction
in all possible executions of the algorithm, i.e., in all possible sequences of
steps executed by the processes according to the algorithm. The way these
steps are scheduled is out of the control of the processes and depends on
the global scheduler. The properties of the abstraction to be implemented
need to be satisfied for a large set of possible interleaving of these steps.
These properties usually fall into two classes: safety and liveness. Having in
mind the distinction between these classes usually helps understand the two
complementary faces of the abstraction and devise an adequate algorithm to
implement it.

Basically, a safety property is a property of a distributed algorithm
that can be violated at some time t and never be satisfied again after that
time. Roughly speaking, safety properties state that the algorithm should
not do anything wrong. To illustrate this, consider a property of perfect links
(which we will discuss in more detail later in this chapter) that, roughly
speaking, stipulates that no process should receive a message unless this
message was indeed sent. In other words, communication links should not
invent messages out of thin air. To state that this property is violated in
some execution of an algorithm, we need to determine a time t at which
some process receives a message that was never sent. This observation helps
devise a correctness argument (by contradiction) for an algorithm presumably
satisfying the property.

More precisely, a safety property is a property such that, whenever it is
violated in some execution E of an algorithm, there is a partial execution E ′

of E such that the property will be violated in any extension of E ′. In more
sophisticated terms, we would say that safety properties are closed under
execution prefixes.

2.2 Abstracting Processes 29

Of course, safety properties are not enough. Sometimes, a good way of
preventing bad things from happening consists in simply doing nothing. In
many countries, some public administrations seem to understand this rule
quite well and hence have an easy time ensuring safety.

Therefore, to define a useful abstraction, it is necessary to add some live-
ness properties to ensure that eventually something good happens. For
instance, to define a meaningful notion of perfect links, we would require
that if a correct process sends a message to a correct destination process,
then the destination process should eventually deliver the message (besides
the safety property which stipulates that messages should not be invented out
of thin air and only delivered if priorly sent). To state that such a liveness
property is violated in a given execution, we need to show that there is an
infinite scheduling of the steps of the algorithm where the message is never
delivered.

More precisely, a liveness property is a property of a distributed system
execution such that, for any time t, there is some hope that the property can
be satisfied at some time t′ ≥ t. It is a property for which, quoting Cicero,
“While there is life there is hope.”

The challenge is to guarantee both liveness and safety. (The difficulty is
not in talking, or not lying, but in telling the truth.) Indeed, useful distributed
services are supposed to provide both liveness and safety properties. In gen-
eral, meeting an abstraction with only one kind of property is usually a sign
of a flawed specification.

Consider, for instance, a traditional interprocess communication service
such as TCP: it ensures that messages exchanged between two processes are
neither lost or duplicated, and are received in the order in which they were
sent. As we pointed out, requiring that messages are not lost is a liveness
property. Requiring that the messages are not duplicated and received in the
order in which they were sent, are safety property.

Although it is usually better, for modularity purposes, to separate the
safety and liveness properties of an abstraction specification into disjoint
classes, we will sometimes, and for the sake of conciseness, consider properties
that are neither pure liveness nor pure safety properties, but rather a union
of both.

2.2 Abstracting Processes

2.2.1 Process Failures

Unless it fails, a process is supposed to execute the algorithm assigned to
it, through the set of components implementing the algorithm within that
process. Our unit of failure is the process. When the process fails, all its
components are assumed to fail as well, and at the same time.

30 2. Basic Abstractions

Omissions

Crashes

Arbitrary

Crashes & Recoveries

Fig. 2.2: Failure modes of a process

Process abstractions differ according to the nature of the failures that
are considered. We discuss various forms of failures in the next section (Fig-
ure 2.2).

2.2.2 Arbitrary Faults and Omissions

A process is said to fail in an arbitrary manner if it deviates arbitrarily from
the algorithm assigned to it. The arbitrary fault behavior is the most general
one. In fact, it makes no assumptions on the behavior of faulty processes,
which are allowed any kind of output and, therefore, can send any kind of
message. These kinds of failures are sometimes called Byzantine (see the his-
torical note at the end of this chapter) or malicious failures. Not surprisingly,
arbitrary faults are the most expensive to tolerate, but this is the only ac-
ceptable option when an extremely high coverage is required or when there
is the risk of some processes being controlled by malicious users that delib-
erately try to prevent correct system operation. An arbitrary fault needs not
be intentional and malicious: it can simply be caused by a bug in the imple-
mentation, the programming language, or the compiler. This bug can thus
cause the process to deviate from the algorithm it was supposed to execute.

A more restricted kind of fault to consider is the omission kind (Fig-
ure 2.2). An omission fault occurs when a process does not send (or receive)
a message it is supposed to send (or receive), according to its algorithm. In
general, omission faults are due to buffer overflows or network congestion.
Omission faults result in lost messages. With an omission, the process devi-
ates from the algorithm assigned to it by dropping some messages that should
have been exchanged with other processes.

2.2.3 Crashes

An interesting particular case of omissions is when a process executes its al-
gorithm correctly, including the exchange of messages with other processes,
possibly until some time t, after which the process does not send any mes-
sage to any other process. This is what happens if the process, for instance,

2.2 Abstracting Processes 31

crashes at time t and never recovers after that time. If, besides not sending
any message after some time t, the process also stops executing any local
computation after t, we talk about a crash failure (Figure 2.2), and a crash-
stop process abstraction. The process is said to crash at time t. With this
abstraction, a process is said to be faulty if it crashes. It is said to be correct
if it does not ever crash and executes an infinite number of steps. We discuss
two ramifications of the crash-stop abstraction.

It is usual to devise algorithms that implement a given distributed pro-
gramming abstraction, say, some form of agreement, provided that a minimal
number F of processes are correct, e.g., at least one, or a majority. This means
that any number of processes can crash up to F − 1 times.

It is important to understand here that such an assumption does not
mean that the hardware underlying these processes is supposed to operate
correctly forever. In fact, the assumption means that, in every execution of
the algorithm making use of that abstraction, it is very unlikely that more
than a certain number F of processes crash, during the lifetime of that very
execution. An engineer picking such an algorithm for a given application
should be confident that the chosen elements underlying the software and
hardware architecture make that assumption plausible. In general, it is also
good practice, when devising algorithms that implement a given distributed
abstraction under certain assumptions, to determine precisely which prop-
erties of the abstraction are preserved and which can be violated when a
specific subset of the assumptions are not satisfied, e.g., when more than F
processes crash.

Considering a crash-stop process abstraction boils down to assuming that
a process executes its algorithm correctly, unless it crashes, in which case it
does not recover. That is, once it crashes, the process does not ever perform
any computation. Obviously, in practice, processes that crash can in general
be restarted and hence do usually recover. In fact, it is usually desirable that
they do.

It is also important to notice that, in practice, the crash-stop process
abstraction does not preclude the possibility of recovery, nor does it mean that
recovery should be prevented for a given algorithm (assuming a crash-stop
process abstraction) to behave correctly. It simply means that the algorithm
should not rely on some of the processes to recover in order to pursue its
execution. These processes might not recover, or might recover only after a
long period encompassing the crash detection and then the rebooting delay.
In some sense, an algorithm that is not relying on crashed processes to recover
would typically be faster than an algorithm relying on some of the processes
to recover (we will discuss this issue in the next section). Nothing, however,
prevents recovered processes from getting informed about the outcome of
the computation and participating in subsequent instances of the distributed
algorithm.

32 2. Basic Abstractions

Unless explicitly stated otherwise, we will assume the crash-stop process
abstraction throughout this book.

2.2.4 Recoveries

Sometimes, the assumption that certain processes never crash is simply not
plausible for certain distributed environments. For instance, assuming that a
majority of the processes do not crash, even only long enough for an algorithm
execution to terminate, might simply be too strong.

An interesting alternative as a process abstraction to consider in this case
is the crash-recovery one; we also talk about a crash-recovery kind of failure
(Figure 2.2). In this case, we say that a process is faulty if either the pro-
cess crashes and never recovers, or the process keeps infinitely often crashing
and recovering. Otherwise, the process is said to be correct. Basically, such a
process is eventually always (i.e., during the lifetime of the algorithm execu-
tion of interest) up and running. A process that crashes and recovers a finite
number of times is correct in this model (i.e., according to this abstraction
of a process).

According to the crash-recovery abstraction, a process can indeed crash:
in such a case, the process stops sending messages, but might later recover.
This can be viewed as an omission fault, with one exception, however: a
process might suffer amnesia when it crashes and loses its internal state. This
significantly complicates the design of algorithms because, upon recovery, the
process might send new messages that contradict messages that the process
might have sent prior to the crash. To cope with this issue, we sometimes
assume that every process has, in addition to its regular volatile memory, a
stable storage (also called a log), which can be accessed through store and
retrieve primitives.

Upon recovery, we assume that a process is aware that it has crashed
and recovered. In particular, a specific 〈 Recovery 〉 event is assumed to be
automatically generated by the runtime environment in a similar manner to
the 〈 Init 〉 event, executed each time a process starts executing some algo-
rithm. The processing of the 〈 Recovery 〉 event should, for instance, retrieve
the relevant state of the process from stable storage before the processing of
other events is resumed. The process might, however, have lost all the re-
maining data that was preserved in volatile memory. This data should thus
be properly reinitialized. The 〈 Init 〉 event is considered atomic with respect
to recovery. More precisely, if a process crashes in the middle of its initial-
ization procedure and recovers, say, without having processed the 〈 Init 〉
event properly, the process should invoke again the 〈 Init 〉 procedure before
proceeding to the 〈 Recovery 〉 one.

In some sense, a crash-recovery kind of failure matches an omission fault
if we consider that every process stores every update to any of its variables
in stable storage. This is not very practical because access to stable storage
is usually expensive (as there is a significant delay in accessing it). Therefore,

2.2 Abstracting Processes 33

a crucial issue in devising algorithms with the crash-recovery abstraction is
to minimize the access to stable storage.

One way to alleviate the need for accessing any form of stable storage
is to assume that some of the processes never crash (during the lifetime
of an algorithm execution). This might look contradictory with the actual
motivation for introducing the crash-recovery process abstraction in the first
place. In fact, there is no contradiction, as we explain below. As discussed
earlier, with crash-stop failures, some distributed-programming abstractions
can be implemented only under the assumption that a certain number of
processes never crash, say, a majority of the processes participating in the
computation, e.g., four out of seven processes. This assumption might be
considered unrealistic in certain environments. Instead, one might consider it
more reasonable to assume that at least two processes do not crash during the
execution of an algorithm. (The rest of the processes would indeed crash and
recover.) As we will discuss later in the book, such an assumption makes it
sometimes possible to devise algorithms assuming the crash-recovery process
abstraction without any access to a stable storage. In fact, the processes that
do not crash implement a virtual stable storage abstraction, and this is made
possible without knowing in advance which of the processes will not crash in
a given execution of the algorithm.

At first glance, one might believe that the crash-stop abstraction can also
capture situations where processes crash and recover, by simply having the
processes change their identities upon recovery. That is, a process that re-
covers after a crash, would behave, with respect to the other processes, as if
it were a different process that was simply not performing any action. This
could easily be done assuming a reinitialization procedure where, besides ini-
tializing its state as if it just started its execution, a process would also change
its identity. Of course, this process should be updated with any information
it might have missed from others, as if it did not receive that information yet.
Unfortunately, this view is misleading, as we explain below. Again, consider
an algorithm devised using the crash-stop process abstraction, and assuming
that a majority of the processes never crash, say at least four out of a total
of seven processes composing the system. Consider, furthermore, a scenario
where four processes do indeed crash, and one process recovers. Pretending
that the latter process is a different one (upon recovery) would mean that
the system is actually composed of eight processes, five of which should not
crash. The same reasoning can then be made for this larger number of pro-
cesses. However, a fundamental assumption that we build upon is that the
set of processes involved in any given computation is static, and the processes
know of each other in advance.

A tricky issue with the crash-recovery process abstraction is the interface
between software modules. Assume that some module of a process, involved
in the implementation of some specific distributed abstraction, delivers some
message or decision to the upper layer (say, the application layer), and subse-

34 2. Basic Abstractions

(a) (b) (c) (d)

Fig. 2.3: The link abstraction and different instances

quently the process hosting the module crashes. Upon recovery, the module
cannot determine if the upper layer (i.e., the application) has processed the
message or decision before crashing or not. There are at least two ways to
deal with this issue:

1. One way is to change the interface between modules. Instead of delivering
a message (or a decision) to the upper layer (e.g., the application layer),
the module may instead store the message (decision) in a stable storage
that is exposed to the upper layer. It is then up to the upper layer to
access the stable storage and exploit delivered information.

2. A different approach consists in having the module periodically deliver
the message (or some decision) to the upper layer (e.g., the application
layer) until the latter explicitly asks for the stopping of the delivery. That
is, the distributed programming abstraction implemented by the module
is in this case responsible for making sure the application will make use
of the delivered information. Of course, the application layer needs in
this case to check for duplicates.

2.3 Abstracting Communication

The link abstraction is used to represent the network components of the dis-
tributed system. Every pair of processes is connected by a bidirectional link,
a topology that provides full connectivity among the processes. In practice,
different topologies may be used to implement this abstraction, possibly using
routing algorithms. Concrete examples of architectures that materialize the
link abstraction, such as the ones illustrated in Figure 2.3, include the use of
(a) a fully connected mesh, (b) a broadcast medium (such as an Ethernet),
(c) a ring, or (d) a mesh of links interconnected by bridges and routers (such
as the Internet). Many algorithms refine the abstract network view to make
use of the properties of the underlying topology.

Messages exchanged between processes are uniquely identified and ev-
ery message includes enough information for the recipient of a message to

2.3 Abstracting Communication 35

uniquely identify its sender. Furthermore, when exchanging messages in a
request-reply manner among different processes, we usually assume that the
processes have means to identify which reply message is a response to which
request message. This can typically be achieved by having the processes gen-
erate (random) timestamps, based on sequence numbers or local clocks. This
assumption alleviates the need for explicitly introducing these timestamps in
the algorithm.

2.3.1 Link Failures

In a distributed system, it is possible for messages to be lost when transiting
through the network. However, it is reasonable to assume that the probability
for a message to reach its destination is nonzero because it is very unlikely
that all messages exchanged among two processes are systematically lost
unless there is a severe network failure (such as a network partition). A
simple way to overcome the inherent unreliability of the network is to keep
on retransmitting messages until they reach their destinations.

In the following, we will describe three different kinds of link abstractions.
Some are stronger than others in the sense that they provide more reliability
guarantees. All three are point-to-point link abstractions, i.e., they support
the communication between pairs of processes. (In the next chapter, we will
be defining broadcast communication abstractions.)

We will first describe the abstraction of fair-loss links, which captures
the basic idea that messages might be lost but the probability for a message
not to be lost is nonzero. Then we describe higher-level abstractions that
could be implemented over fair-loss links using retransmission mechanisms
to hide from the programmer part of the unreliability of the network. We will
more precisely consider stubborn and perfect link abstractions, and show how
they can be implemented on top of fair-loss links. As we pointed out earlier,
unless explicitly stated otherwise, we will be assuming the crash-stop process
abstraction.

We define the properties of each of our link abstractions using two kinds
of primitives: send and deliver. The term deliver is preferred to the more
general term receive to make clear that we are talking about a specific link
abstraction to be implemented over the network. A message may typically be
received at a given port of the network and stored within some buffer, and
then some algorithm executed to make sure the properties of the required
link abstraction are satisfied, before the message is actually delivered. When
there is no ambiguity, we alternatively use the term receive to mean deliver.
On the other hand, when implementing a communication abstraction A over
a communication abstraction B, we will use sometimes the term deliver for
A and receive for B to disambiguate.

A process invokes the send primitive of a link abstraction to request the
sending of a message using that abstraction. When the process invokes that
primitive, we say that the process sends the message. It might then be up to

36 2. Basic Abstractions

Module 2.1 Interface and properties of fair-loss point-to-point links

Module:

Name: FairLossPointToPointLinks (flp2p).

Events:

Request: 〈 flp2pSend | dest, m 〉: Used to request the transmission of
message m to process dest.

Indication: 〈 flp2pDeliver | src, m 〉: Used to deliver message m sent by
process src.

Properties:

FLL1: Fair-loss: If a message m is sent infinitely often by process pi to
process pj , and neither pi nor pj crash, then m is delivered an infinite
number of times by pj .

FLL2: Finite duplication: If a message m is sent a finite number of times
by process pi to process pj , then m cannot be delivered an infinite number
of times by pj .

FLL3: No creation: If a message m is delivered by some process pj , then
m was previously sent to pj by some process pi.

the link abstraction to make some effort in transmitting the message to the
target process, according to the actual specification of the abstraction. The
deliver primitive is invoked by the algorithm implementing the abstraction
on a destination process. When this primitive is invoked on a process p for a
message m, we say that p delivers m.

2.3.2 Fair-Loss Links

The interface of the fair-loss link abstraction is described by Module 2.1,
“FairLossPointToPointLinks (flp2p).” This consists of two events: a request
event, used to send messages, and an indication event, used to deliver the
messages. Fair-loss links are characterized by the properties FLL1–FLL3.

Basically, the fair-loss property guarantees that a link does not system-
atically drop any given message. Therefore, if neither the sender process nor
the recipient process crashes, and if a message keeps being retransmitted, the
message is eventually delivered. The finite duplication property intuitively
ensures that the network does not perform more retransmissions than that
performed by the sending process. Finally, the no creation property ensures
that no message is created or corrupted by the network.

2.3.3 Stubborn Links

We define the abstraction of stubborn links in Module 2.2, “StubbornPointTo-
PointLink (sp2p).” This abstraction hides lower layer retransmission mecha-

2.3 Abstracting Communication 37

Module 2.2 Interface and properties of stubborn point-to-point links

Module:

Name: StubbornPointToPointLink (sp2p).

Events:

Request: 〈 sp2pSend | dest, m 〉: Used to request the transmission of
message m to process dest.

Indication:〈 sp2pDeliver | src, m 〉: Used to deliver message m sent by
process src.

Properties:

SL1: Stubborn delivery: Let pi be any process that sends a message m to
a correct process pj . If pi does not crash, then pj delivers m an infinite
number of times.

SL2: No creation: If a message m is delivered by some process pj , then m
was previously sent to pj by some process pi.

nisms used by the sender process, when using actual fair-loss links, to make
sure its messages are eventually delivered by the destination process.

Algorithm: Retransmit Forever. Algorithm 2.1, called “Retransmit For-
ever”, describes a very simple implementation of a stubborn link over a fair-
loss one. As the name implies, the algorithm simply keeps on retransmitting
all messages sent. This overcomes possible omissions in the links. Note that
we assume here the availability of a timeout service that can be invoked using
the startTimer function and which triggers a Timeout event after a specified
delay. This is a purely local mechanism, i.e., it can be implemented by a local
counter and does not rely on any global synchronization mechanism.

We discuss, in the following, the correctness of the algorithm as well as
some performance considerations.

Correctness. The fair-loss property of the underlying links guarantees that,
if the target process is correct, it will indeed deliver, infinitely often, every
message that was sent by every non-crashed process. This is because the algo-
rithm makes sure the sender process will keep flp2pSending those messages
infinitely often, unless that sender process itself crashes. The no creation
property is simply preserved by the underlying links.

Performance. The algorithm is clearly not efficient and its purpose is pri-
marily pedagogical. It is pretty clear that, within a practical application, it
does not make much sense for a process to keep on, and at every step, re-
stransmitting previously sent messages infinitely often. There are at least two
complementary ways to prevent that effect and, hence, to make the algorithm
more practical. First, it is very important to remember that the very notions
of infinity and infinitely often are context dependent: they basically depend
on the algorithm making use of stubborn links. After the algorithm making

38 2. Basic Abstractions

Algorithm 2.1 Retransmit Forever

Implements:
StubbornPointToPointLink (sp2p).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 Init 〉 do
sent := ∅;
startTimer (TimeDelay);

upon event 〈 Timeout 〉 do
forall (dest,m) ∈ sent do

trigger 〈 flp2pSend | dest, m 〉;
startTimer (TimeDelay);

upon event 〈 sp2pSend | dest, m 〉 do
trigger 〈 flp2pSend | dest, m 〉;
sent := sent ∪ {(dest,m)};

upon event 〈 flp2pDeliver | src, m 〉 do
trigger 〈 sp2pDeliver | src, m 〉;

use of those links has ended its execution, there is no need to keep on sending
messages. Second, an acknowledgment mechanism can be added to notify a
sender that it does not need to keep on sending a given set of messages any
more. This mechanism can be performed whenever a target process has de-
livered (i.e., properly consumed) those messages, or has delivered messages
that semantically subsume the previous ones, e.g., in stock exchange appli-
cations when new values might subsume old ones. Such a mechanism should
however be viewed as an external algorithm, and cannot be integrated within
our algorithm implementing stubborn links. Otherwise, the algorithm might
not be implementing the stubborn link abstraction anymore, for the subsume
notion is not part of the abstraction.

2.3.4 Perfect Links

With the stubborn link abstraction, it is up to the target process to check
whether a given message has already been delivered or not. Adding mecha-
nisms detecting and suppressing message duplicates, in addition to mecha-
nisms for message retransmission, allows us to build an even higher level ab-
straction: the perfect link one, sometimes also called the reliable link abstrac-
tion. The perfect link abstraction specification is captured by the “Perfect-
PointToPointLink (pp2p)” module, Module 2.3. The interface of this module
also consists of two events: a request event (to send messages) and an in-
dication event (used to deliver messages). Perfect links are characterized by
properties PL1–PL3.

2.3 Abstracting Communication 39

Module 2.3 Interface and properties of perfect point-to-point links

Module:

Name: PerfectPointToPointLink (pp2p).

Events:

Request: 〈 pp2pSend | dest, m 〉: Used to request the transmission of
message m to process dest.

Indication:〈 pp2pDeliver | src, m 〉: Used to deliver message m sent by
process src.

Properties:

PL1: Reliable delivery: Let pi be any process that sends a message m to
a process pj . If neither pi nor pj crashes, then pj eventually delivers m.

PL2: No duplication: No message is delivered by a process more than once.

PL3: No creation: If a message m is delivered by some process pj , then
m was previously sent to pj by some process pi.

Algorithm 2.2 Eliminate Duplicates

Implements:
PerfectPointToPointLinks (pp2p).

Uses:
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 pp2pSend | dest, m 〉 do
trigger 〈 sp2pSend | dest, m 〉;

upon event 〈 sp2pDeliver | src, m 〉 do
if (m �∈ delivered) then

delivered := delivered ∪ { m };
trigger 〈 pp2pDeliver | src, m 〉;

Algorithm: Eliminate Duplicates. Algorithm 2.2 (“Eliminate Dupli-
cates”) conveys a very simple implementation of a perfect link over a stubborn
one. It simply keeps a record of all messages that have been delivered in the
past; when a message is received, it is delivered only if it is not a duplicate.
We discuss, in the following, the correctness of the algorithm as well as some
performance considerations.

Correctness. Consider the reliable delivery property of perfect links. Let m
be any message pp2pSent by some process p to some process q, and assume
that none of these processes crash. According to the algorithm, process p
sp2pSends m to q using the underlying stubborn link. Due to the stubborn

40 2. Basic Abstractions

delivery property of the underlying link, q eventually sp2pDelivers m, at least
once, and hence pp2pDelivers m. The no duplication property follows from
the test performed by the algorithm before delivering any message: whenever
a message is sp2pDelivered and before pp2pDelivering that message. The
no creation property simply follows from the no creation property of the
underlying stubborn link.

Performance. Besides the performance considerations we discussed for our
stubborn link implementation, i.e., Algorithm 2.1 (“Retransmit Forever”),
and which clearly apply to the perfect link implementation of Algorithm 2.2
(“Eliminate Duplicates”), there is an additional concern related to maintain-
ing the ever growing set of messages delivered at every process, given actual
physical memory limitations.

At first glance, one might think of a simple way to circumvent this issue by
having the target process acknowledge messages periodically and the sender
process acknowledge having received such acknowledgments and promise not
to send those messages any more. There is no guarantee, however, that such
messages will not be still in transit and will later reach the target process.
The latter might in this case deliver again, violating the no creation prop-
erty. Additional mechanisms, e.g., timestamp-based, to recognize such old
messages could, however, be used to circumvent this issue.

2.3.5 Logged Perfect Links

As we discuss below, the perfect link abstraction and the “Eliminate Du-
plicates” algorithm presented above are unsuitable for the crash-recovery
process abstraction.

The problem with that algorithm for the crash-recovery process abstrac-
tion is easy to see. The algorithm uses a delivered variable to detect duplicates;
but this variable is simply maintained in volatile memory. If a process crashes,
the contents of this variable are lost. Upon recovery, the process will no longer
remember which messages have already been delivered and might deliver the
same message twice.

There is, however, a more subtle issue with the interface of the abstraction
itself in the crash-recovery scenario. In this model, “delivering” a message by
simply triggering an event does not provide any guarantee that the upper
layer will properly handle the event. In fact, one layer can trigger an event
and the process may crash immediately after, before the upper layer does
anything useful with that event. One way to ensure that the upper layer
eventually handles a “delivered” event is to redefine the very notion of “de-
livery.” A suitable definition of “delivering” an event in the crash-recovery
model consists of logging the event in a stable storage that is exposed to the
upper layer.

Specification. The “LoggedPerfectPointToPointLink (log-pp2p)” module
(Module 2.4) highlights the importance of this subtle interface issue. The

2.3 Abstracting Communication 41

Module 2.4 Interface and properties of logged perfect point-to-point links

Module:

Name: LoggedPerfectPointToPointLink (log-pp2p).

Events:

Request: 〈 log-pp2pSend | dest, m 〉: Used to request the transmission of
message m to process dest.

Indication:〈 log-pp2pDeliver | delivered 〉: Used to notify the upper level
of potential updates to the delivered log.

Properties:

LPL1: Reliable delivery: Let pi be any process that sends a message m
to a process pj . If pi does not crash and pj is correct, then pj eventually
delivers m.

LPL2: No duplication: No message is delivered by a process more than
once.

LPL3: No creation: If a message m is delivered by some process pj , then
m was previously sent to pj by some process pi.

fundamental difference with the abstraction of perfect links presented in the
previous section is in the manner messages are delivered. Instead of simply
triggering an event to deliver a message, the logged perfect links abstraction
relies on storing the message in a local log, which can later be read by the
layer above. That layer is notified about changes in the log through specific
events.

The act of delivering the message corresponds here to the act of logging
the variable delivered with m in that variable. Hence, the properties of the
abstraction are redefined in term of log operations.

Algorithm: Log Delivered. Algorithm 2.3 (“Log Delivered”) conveys a
very simple implementation of a logged perfect link over a stubborn one.
As in the “Eliminate Duplicates” algorithm, it simply keeps a record of all
messages that have been delivered in the past; however, here this record is
kept in a stable storage that is exposed to the upper layer.

Correctness. The correctness argument is similar to that of the “Eliminate
Duplicates” algorithm modulo the fact that delivering means here logging
the message in stable storage.

Performance. In terms of messages, the performance of the “Log Delivered”
algorithm is similar to that of the “Eliminate Duplicates.” However, “Log
Delivered” requires a log operation every time a new message is received.

2.3.6 On the Link Abstractions

Throughout this book, we will mainly assume perfect links (except in the
crash-recovery case, as just discussed above). It may seem awkward to assume

42 2. Basic Abstractions

Algorithm 2.3 Log Delivered

Implements:
LoggedPerfectPointToPointLinks (log-pp2p).

Uses:
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;
store (delivered);

upon event 〈 Recovery 〉 do
retrieve (delivered);
trigger 〈 log-pp2pDeliver | delivered 〉;

upon event 〈 log-pp2pSend | dest, m 〉 do
trigger 〈 sp2pSend | dest, m 〉;

upon event 〈 sp2pDeliver | src, m 〉 do
if (m �∈ delivered) then

delivered := delivered ∪ { m };
store (delivered);
trigger 〈 log-pp2pDeliver | delivered 〉;

that links are perfect when it is known that real links may crash, lose, and du-
plicate messages. This assumption only captures the fact that these problems
can be addressed by some lower level protocol. As long as the network remains
connected, and processes do not commit an unbounded number of omission
failures, link crashes may be masked by routing. The loss of messages can be
masked through retransmission, as we have just explained through various
algorithms. This functionality is often found in standard transport-level pro-
tocols such as TCP. These protocols are typically supported by the operating
system and do not need to be reimplemented.

The details of how the perfect link abstraction is implemented is not
relevant for the understanding of the fundamental principles of many dis-
tributed algorithms. On the other hand, when developing actual distributed
applications, these details become relevant. For instance, it may happen that
some distributed algorithm requires the use of sequence numbers and mes-
sage retransmissions, even assuming perfect links. In this case, in order to
avoid the redundant use of similar mechanisms at different layers, it may be
more effective to rely just on weaker links, such as fair-loss or stubborn links.
This is somehow what will happen when assuming the crash-recovery process
abstraction.

Indeed, as we have seen, in the crash-recovery model, delivery is imple-
mented by exposing a log maintained in stable storage. The upper layer is
therefore required to keep its own record of which messages in the log it has

2.4 Timing Assumptions 43

already processed. Thus, the upper layer will generally have the ability to
eliminate duplicates and can often operate using the weaker abstraction of
stubborn links, avoiding the use of more expensive logged perfect links.

More generally, many networking issues should be considered when mov-
ing to concrete implementations. Among others:

• Network topology awareness. Many optimizations can be achieved if the
network topology is exposed to the upper layers. For instance, communi-
cation in a local-area network exhibits a much lower latency than commu-
nication over wide-area links. Such facts should be taken into account by
any practical algorithm.

• Flow control. In a practical system, the resources of a process are limited.
This means that there is a limited number of messages a process is able to
handle per unit of time. If a sender exceeds the receiver’s capacity, messages
may be lost. Practical systems must include feedback mechanisms to allow
the senders to adjust their sending rate to the capacity of receivers.

• Heterogeneity awareness. In a real system, not all processes are equal. In
fact, it may happen that some processes run on faster processors, have more
memory, or can access more bandwidth than others. This heterogeneity
may be exploited by an algorithm such that more demanding tasks are
assigned to the most powerful processes first.

2.4 Timing Assumptions

An important aspect of the characterization of a distributed system is re-
lated to the behavior of its processes and links with respect to the passage
of time. In short, determining whether we can make any assumption on time
bounds on communication delays and (relative) process speeds is of primary
importance when defining a model of a distributed system. We address some
time-related issues in this section and then consider the failure detector ab-
straction as a meaningful way to abstract useful timing assumptions.

2.4.1 Asynchronous System

Assuming an asynchronous distributed system comes down to not making
any timing assumption about processes and channels. This is precisely what
we have been doing so far, when defining our process and link abstractions.
That is, we did not assume that processes have access to any sort of physical
clock, nor did we assume any bounds on processing or communication delays.

Even without access to physical clocks, it is still possible to measure the
passage of time based on the transmission and delivery of messages, i.e., time
is defined with respect to communication. Time measured this way is called
logical time, and the resulting notion of a clock is called logical clock .

The following rules can be used to measure the passage of time in an
asynchronous distributed system:

44 2. Basic Abstractions

e1 e2

p2

p3

p1

(a)

e1

p2

p3

p1

e2

(b)

p2

p3

p1

e
′

e1

e2

(c)

Fig. 2.4: The happened-before relation

• Each process p keeps an integer called logical clock lp, initially 0.
• Any time an event occurs at process p, the logical clock lp is incremented

by one unit.
• When a process sends a message, it timestamps the message with the value

of its logical clock at the moment the message is sent and tags the message
with that timestamp. The timestamp of event e is denoted by t(e).

• When a process p receives a message m with timestamp lm, p increments
its timestamp in the following way: lp = max(lp, lm) + 1.

An interesting aspect of logical clocks is the fact that they capture cause-
effect relations in systems where the processes can only interact through
message exchanges. We say that an event e1 may potentially have caused
another event e2, denoted as e1 → e2, if the following relation, called the
happened-before relation, applies:

• e1 and e2 occurred at the same process p and e1 occurred before e2 (Fig-
ure 2.4 (a)).

• e1 corresponds to the transmission of a message m at a process p and e2

to the reception of the same message at some other process q (Figure 2.4
(b)).

• there exists some event e′ such that e1 → e′ and e′ → e2 (Figure 2.4 (c)).

It can be shown that if the events are timestamped with logical clocks, then
e1 → e2 ⇒ t(e1) < t(e2). Note that the opposite implication is not true.

As we discuss in the next chapters, even in the absence of any physical
timing assumption, and using only a logical notion of time, we can imple-
ment some useful distributed programming abstractions. Many abstractions
do, however, need some physical timing assumptions. In fact, even a very
simple form of agreement, namely, consensus, is impossible to solve in an
asynchronous system even if only one process fails, and it can only do so by
crashing (see the historical note at the end of this chapter). In this problem,
which we will address later in this book, the processes each start with an ini-
tial value, and have to agree on a common final value, from the initial values.
The consequence of the consensus impossibilty is immediate for the impos-
sibility of deriving algorithms for many agreement abstractions, including
group membership or totally ordered group communication.

2.4 Timing Assumptions 45

2.4.2 Synchronous System

While assuming an asynchronous system comes down to not making any
physical timing assumption on processes and links, assuming a synchronous
system comes down to assuming the following three properties:

1. Synchronous computation. There is a known upper bound on processing
delays. That is, the time taken by any process to execute a step is always
less than this bound. Remember that a step gathers the delivery of a
message (possibly nil) sent by some other process, a local computation
(possibly involving interaction among several layers of the same process),
and the sending of a message to some other process.

2. Synchronous communication. There is a known upper bound on message
transmission delays. That is, the time period between the instant at which
a message is sent and the time at which the message is delivered by the
destination process is smaller than this bound.

3. Synchronous physical clocks. Processes are equipped with a local physical
clock. There is a known upper bound on the rate at which the local
physical clock deviates from a global real-time clock. (Remember that
we make here the assumption that such a global real-time clock exists in
our universe, i.e., at least as a fictional device to simplify the reasoning
about the processes, but it is not accessible to the processes.)

In a synchronous distributed system, several useful services can be pro-
vided. We enumerate some if them in the following:

• Timed failure detection. Every crash of a process may be detected within
bounded time: whenever a process p crashes, all processes that did not crash
detect the crash of p within a known bounded time. This can be achieved,
for instance, using a heartbeat mechanism, where processes periodically
exchange (heartbeat) messages and detect, within a limited time period,
the crashes.

• Measure of transit delays. It is possible to get a good approximation of the
delays of messages in the communication links and, from there, infer which
nodes are more distant or connected by slower or overloaded links.

• Coordination based on time. One can implement a lease abstraction that
provides the right to execute some action that is granted for a fixed amount
of time, e.g., manipulating a specific file.

• Worst-case performance. By assuming a bound on the number of faults and
on the load of the system, it is possible to derive worst case response times
for any given algorithm. This allows a process to know when a message it
has sent has been received by the destination process (provided that the
latter is correct). This can be achieved even if we assume that processes
commit omission failures without crashing, as long as we bound the number
of these omission failures.

46 2. Basic Abstractions

• Synchronized clocks. A synchronous system makes it possible to synchro-
nize the clocks of the different processes in such a way that they are never
apart by more than some known constant δ, known as the clock synchro-
nization precision. Synchronized clocks allow processes to coordinate their
actions and ultimately execute synchronized global steps. Using synchro-
nized clocks makes it possible to timestamp events using the value of the
local clock at the instant they occur. These timestamps can be used to order
events in the system. If there was a system where all delays were constant,
it would be possible to achieve perfectly synchronized clocks (i.e., where δ
would be 0). Unfortunately, such a system cannot be built. In practice, δ
is always greater than zero and events within δ cannot be ordered.

Not surprisingly, the major limitation of assuming a synchronous system is
the coverage of the system, i.e., the difficulty of building a system where
the timing assumptions hold with high probability. This typically requires
careful analysis of the network and processing load and the use of appropriate
processor and network scheduling algorithms. While this may be feasible
for some local area networks, it may not be so, or even desirable, in larger
scale systems such as the Internet. In this case, i.e., on the Internet, there
are periods where messages can take a very long time to arrive at their
destination. One should consider very large values to capture the processing
and communication bounds. This, however, would mean considering worst-
case values which are typically much higher than average values. These worst-
case values are usually so high that any application based on them would be
very inefficient.

2.4.3 Partial Synchrony

Generally, distributed systems appear to be synchronous. More precisely, for
most systems we know of, it is relatively easy to define physical time bounds
that are respected most of the time. There are however periods where the
timing assumptions do not hold, i.e., periods during which the system is asyn-
chronous. These are periods where the network is, for instance, overloaded,
or some process has a shortage of memory that slows it down. Typically, the
buffer that a process might be using to store incoming and outgoing messages
may overflow, and messages may thus get lost, violating the time bound on
the delivery. The retransmission of the messages may help ensure the reliabil-
ity of the channels but introduce unpredictable delays. In this sense, practical
systems are partially synchronous.

One way to capture partial synchrony is to assume that the timing as-
sumptions only hold eventually (without stating when exactly). This boils
down to assuming that there is a time after which these assumptions hold
forever, but this time is not known. In a way, instead of assuming a syn-
chronous system, we assume a system that is eventually synchronous. It is
important to notice that making such assumption does not in practice mean

2.5 Abstracting Time 47

that (1) there is a time after which the underlying system (including applica-
tion, hardware, and networking components) is synchronous forever, nor does
it mean that (2) the system needs to be initially asynchronous, and then only
after some (long time) period becomes synchronous. The assumption simply
captures the very fact that the system may not always be synchronous, and
there is no bound on the period during which it is asynchronous. However,
we expect that there are periods during which the system is synchronous,
and some of these periods are long enough for an algorithm to terminate its
execution.

2.5 Abstracting Time

2.5.1 Failure Detection

So far, we contrasted the simplicity with the inherent limitation of the asyn-
chronous system assumption; the power with the limited coverage of the
synchronous assumption; and we discussed the intermediate partially syn-
chronous system assumption. Each of these assumptions makes sense for spe-
cific environments, and need to be considered as plausible when reasoning
about general-purpose implementations of high-level distributed program-
ming abstractions.

As far as the asynchronous system assumption is concerned, there are no
timing assumption to be made and our process and link abstractions directly
capture that case. These are, however, not sufficient for the synchronous and
partially synchronous system assumptions. Instead of augmenting our process
and link abstractions with timing capabilities to encompass the synchronous
and partially synchronous system assumptions, we consider a separate and
specific kind of abstraction to encapsulate those capabilities; namely, we con-
sider failure detectors. As we will discuss in the next section, failure detectors
provide information (not necessarily fully accurate) about which processes
have crashed. We will, in particular, consider failure detectors that encapsu-
late timing assumptions of a synchronous system, as well as failure detectors
that encapsulate timing assumptions of a partially synchronous system. Not
surprisingly, the information provided by the first failure detectors about
crashed processes will be more accurate than those provided by the others.
Clearly, the stronger the timing assumptions we make on the distributed sys-
tem (to implement the failure detector) the more accurate that information.

There are at least two advantages of the failure detector abstraction over
an approach where we would directly make timing assumptions on processes
and links. First, the failure detector abstraction alleviates the need for extend-
ing the process and link abstractions introduced earlier in this chapter with
timing assumptions. As a consequence, the simplicity of those abstractions
is preserved. Second, and as will see in the following, we can reason about
the behavior of a failure detector using axiomatic properties with no explicit

48 2. Basic Abstractions

Module 2.5 Interface and properties of the perfect failure detector

Module:

Name: PerfectFailureDetector (P).

Events:

Indication: 〈 crash | pi 〉: Used to notify that process pi has crashed.

Properties:

PFD1: Strong completeness: Eventually every process that crashes is per-
manently detected by every correct process.

PFD2: Strong accuracy: If a process p is detected by any process, then p
has crashed.

references about physical time. Such references are usually error prone. In
practice, except for specific applications like process control, timing assump-
tions are indeed mainly used to detect process failures, i.e., to implement
failure detectors.

2.5.2 Perfect Failure Detection

In synchronous systems, and assuming a process crash-stop abstraction,
crashes can be accurately detected using timeouts . For instance, assume that
a process sends a message to another process and awaits a response. If the
recipient process does not crash, then the response is guaranteed to arrive
within a time period equal to the worst case processing delay plus two times
the worst case message transmission delay (ignoring the clock drifts). Using
its own clock, a sender process can measure the worst case delay required to
obtain a response and detect a crash in the absence of such a reply within
the timeout period: the crash detection will usually trigger a corrective pro-
cedure. We encapsulate such a way of detecting failures in a synchronous
system through the use of a perfect failure detector abstraction.

Specification. The perfect failure detector is denoted by P , and it outputs,
at every process, the set of processes that are detected to have crashed (we
simply say detected). A perfect failure detector is characterized by the accu-
racy and completeness properties of Module 2.5. The act of detecting a crash
coincides with the triggering of the event crash: once the crash of a process
p is detected by some process q, the detection is permanent, i.e., q will not
change its mind.

Algorithm: Exclude on Timeout. Algorithm 2.4, which we call “Exclude
on Timeout”, implements a perfect failure detector assuming a synchronous
system. Communication links do not lose messages sent by a correct process
to a correct process (perfect links), and the transmission period of every
message is bounded by some known constant, in comparison to which the
local processing time of a process, as well as the clock drifts, are negligible.

2.5 Abstracting Time 49

Algorithm 2.4 Exclude on Timeout

Implements:
PerfectFailureDetector (P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π ;
detected := ∅;
startTimer (TimeDelay);

upon event 〈 Timeout 〉 do
forall pi ∈ Π do

if (pi �∈ alive) ∧ (pi �∈ detected) then
detected := detected ∪ { pi };
trigger 〈 crash | pi 〉;

trigger 〈 pp2pSend | pi, [Heartbeat] 〉;
alive := ∅;
startTimer (TimeDelay);

upon event 〈 pp2pDeliver | src, [Heartbeat] 〉 do
alive := alive ∪ { src };

The algorithm makes use of a specific timeout mechanism initialized with
a timeout delay chosen to be large enough such that, within that period,
every process has enough time to send a message to all, and each of these
messages has enough time to be delivered at its destination (provided this
destination process did not crash). Whenever the timeout period expires, the
specific Timeout event is triggered. In order for the algorithm not to trigger
an infinite number of failure detection events, 〈 crash | pi 〉, for every faulty
process pi, once an event has been triggered for a given process pi, we simply
put that process in a specific variable detected and avoid triggering duplicate
failure detection events for pi.

Correctness. Consider the strong completeness property of a perfect failure
detector. If a process p crashes, it stops sending heartbeat messages, and no
process will deliver its messages: remember that perfect links ensure that no
message is delivered unless it was sent. Every correct process will thus detect
the crash of p.

Consider now the strong accuracy property of a perfect failure detector.
The crash of a process p is detected by some other process q, only if q does
not deliver a message from p before a timeout period. This can happen only
if p has indeed crashed because the algorithm makes sure p must have other-
wise sent a message, and the synchrony assumption implies that the message
should have been delivered before the timeout period.

50 2. Basic Abstractions

Performance. For presentation simplicity, we omitted a simple optimization
which consists in not sending any heartbeat messages to processes that were
detected to have crashed.

It is important to notice that the time to detect a failure depends on the
timeout delay. A large timeout, say ten times the expected delay needed to
send a message and deliver it to all processes, would reasonably cope with
situations where the delay would be slightly extended. One would however
detect, and hence react to, failures earlier with a shorter timeout. The risk
here is that the probability to falsely detect a crash is higher. One way to
cope with such a trade-off is to assume a imperfect failure detector, as we
will discuss later.

2.5.3 Leader Election

Often, one may not need to detect which processes have failed, but rather
need to elect a process that has not failed. This process may then act as the
coordinator in some steps of a distributed algorithm. This process is in a sense
trusted by the other processes and elected as their leader. The leader election
abstraction we discuss here provides such support. It can also be viewed as a
failure detector in the sense that its properties do not depend on the actual
computation of the processes but rather on their failures. Indeed, as we will
see here, the leader election abstraction can be implemented straightforwardly
using a perfect failure detector.

More generally, the leader election abstraction consists in choosing one
process to be selected as a unique representative of the group of processes
in the system. For this abstraction to be useful in a distributed setting, a
new leader should be elected if the current leader crashes. Such abstraction
is particularly useful in a primary-backup replication scheme, for instance.
Following this scheme, a set of replica processes coordinate their activities
to provide the illusion of a unique fault-tolerant (highly available) service.
Among the set of replica processes, one is chosen as the leader. This leader
process, sometimes called the primary, treats the requests submitted by the
client processes on behalf of the other replicas, called backups. Before a leader
returns a reply to a given client, it updates its backups. If the leader crashes,
one of the backups is elected as the new leader, i.e., the new primary.

Specification. We define the leader election abstraction more precisely
through a specific indication, denoted by leLeader which, when triggered on
a process p at some given time, means that the process is elected leader from
that time on, until it crashes. The properties of the abstraction are given in
Module 2.6.

The first property ensures the eventual presence of a correct leader.
Clearly, it may be the case that, at some point in time, no process is leader.
It may also be the case that no leader is running. The property ensures, how-
ever, that, unless there is no correct process, some correct process is eventu-
ally elected leader. The second property ensures the stability of the leader.

2.5 Abstracting Time 51

Module 2.6 Interface and properties of leader election

Module:

Name: LeaderElection (le).

Events:

Indication: 〈 leLeader | pi 〉: Used to indicate that process pi is the leader.

Properties:

LE1: Either there is no correct process, or some correct process is even-
tually the leader.

LE2: If a process is leader, then all previously elected leaders have crashed.

In other words, it ensures that the only reason to change the leader is if it
crashes. Indirectly, this property precludes the possibility for two processes
to be leader at the same time.

Algorithm: Monarchical Leader Election. Algorithm 2.5 implements
the leader election abstraction assuming a perfect failure detector. The algo-
rithm assumes, furthermore, the existence of a ranking representing a total
order among processes agreed on a priori. This is encapsulated by some func-
tion O. This function would also typically be known by the user of the leader
election abstraction, e.g., the clients of a primary-backup replication scheme,
for optimization purposes as, in the absence of failures, requests would only
need to be sent to primaries.

This function O associates, with every process, those that precede it in
the ranking. A process can become leader only if those that precede it have
crashed. Think of the function as representing the royal ordering in a monar-
chical system. The prince becomes leader if and only if the queen dies. If the
prince dies, maybe his little sister is the next on the list, and so on. Typically,
we would assume that O(p1) = ∅, O(p2) = {p1}, O(p3) = {p1, p2}, and so
forth. The order in this case is p1; p2; p3; ...; pk; pk+1.

Correctness. Property LE1 follows from the completeness property of the
failure detector whereas property LE2 follows from the accuracy property of
the failure detector.

Performance. The process of becoming a leader is a local operation. The
time to react to a failure and become the new leader directly depends on the
latency of the failure detector.

2.5.4 Eventually Perfect Failure Detection

Just like we can encapsulate timing assumptions of a synchronous system
in a perfect failure detector abstraction, we can similarly encapsulate timing
assumptions of a partially synchronous system within an eventually perfect
failure detector abstraction.

52 2. Basic Abstractions

Algorithm 2.5 Monarchical Leader Election

Implements:
LeaderElection (le).

Uses:
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
suspected := ∅;
leader := pj : O(pj) = ∅;
trigger 〈 leLeader | leader 〉;

upon event 〈 crash | pi 〉 do
suspected := suspected ∪{pi};

when exists pi such that O(pi) ⊆ suspected do
leader := pi;
trigger 〈 leLeader | leader 〉;

Specification. Basically, the eventually perfect failure detector abstraction
guarantees that there is a time after which crashes can be accurately detected.
This captures the intuition that, most of the time, timeout delays can be
adjusted so they can lead to accurately detecting crashes. However, there
are periods where the asynchrony of the underlying system prevents failure
detection to be accurate and leads to false suspicions. In this case, we talk
about failure suspicion instead of detection.

More precisely, to implement an eventually perfect failure detector ab-
straction, the idea is to also use a timeout, and to suspect processes that did
not send heartbeat messages within a timeout delay. The original timeout
might be considered quite short if the goal is to react quickly to failures.
Obviously, a suspicion may be wrong in a partially synchronous system. A
process p may suspect a process q, even if q has not crashed, simply because
the timeout delay chosen by p to suspect the crash of q was too short. In
this case, p’s suspicion about q is false. When p receives a message from q,
p revises its judgment and stops suspecting q. Process p also increases its
timeout delay; this is because p does not know what the bound on commu-
nication delay will eventually be; it only knows there will be one. Clearly, if
q now crashes, p will eventually suspect q and will never revise its judgment.
If q does not crash, then there is a time after which p will stop suspecting q,
i.e., the timeout delay used by p to suspect q will eventually be large enough
because p keeps increasing it whenever it commits a false suspicion. This is
because we assume that there is a time after which the system is synchronous.

An eventually perfect failure detector is denoted by �P (� is used to
denote “eventually” and P stands for “perfect”), and it can be described
by the accuracy and completeness properties (EPFD1–2) of Module 2.7. A

2.5 Abstracting Time 53

Module 2.7 Interface and properties of the eventually perfect failure detector

Module:

Name: EventuallyPerfectFailureDetector (�P).

Events:

Indication: 〈 suspect | pi 〉: Used to notify that process pi is suspected
to have crashed.

Indication: 〈 restore | pi 〉: Used to notify that process pi is not suspected
anymore.

Properties:

EPFD1: Strong completeness: Eventually, every process that crashes is
permanently suspected by every correct process.

EPFD2: Eventual strong accuracy: Eventually, no correct process is sus-
pected by any correct process.

process p is said to be suspected by process q after q has triggered the event
suspect(pi) and until it triggers the event restore(pi).

Algorithm: Increasing Timeout. Algorithm 2.6, which we have called
“Increasing Timeout”, implements an eventually perfect failure detector as-
suming a partially synchronous system. As for Algorithm 2.4 (“Exclude on
Timeout”), we make use of a specific timeout mechanism initialized with a
timeout delay. The main differences between Algorithm 2.6 and Algorithm 2.4
is that the first is prepared to suspect a process, and later receive a message
from it (this means that the suspicion was not accurate); the timeout is in
this case increased.

Correctness. The strong completeness property is satisfied as for Algorithm 2.4
(“Exclude on Timeout”). If a process crashes, it will stop sending messages,
will be suspected by every correct process and no process will ever revise its
judgment about that suspicion.

Consider now the eventual strong accuracy property. Consider the time
after which the system becomes synchronous, and the timeout delay becomes
larger than message transmission delays (plus clock drifts and local processing
periods). After this time, any message sent by a correct process to a correct
process is delivered within the timeout delay. Hence, any correct process that
was wrongly suspecting some correct process will revise its suspicion, and no
correct process will ever be suspected by a correct process.

Performance. As for a perfect failure detector, the time to detect a failure
depends on the timeout delay. The difference here is that the timeout can
easily be adjusted to react quickly to failures. A wrong suspicion is somehow
harmless as the very specification of the eventually perfect failure detector
does not preclude false suspicions.

54 2. Basic Abstractions

Algorithm 2.6 Increasing Timeout

Implements:
EventuallyPerfectFailureDetector (�P).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
alive := Π ;
suspected := ∅;
period := TimeDelay;
startTimer (period);

upon event 〈 Timeout 〉 do
if (alive ∩ suspected) �= ∅ then

period := period + Δ;
forall pi ∈ Π do

if (pi �∈ alive) ∧ (pi �∈ suspected) then
suspected := suspected ∪ {pi};
trigger 〈 suspect | pi 〉;

else if (pi ∈ alive) ∧ (pi ∈ suspected) then
suspected := suspected \ {pi};
trigger 〈 restore | pi 〉;

trigger 〈 pp2pSend | pi, [Heartbeat] 〉;
alive := ∅;
startTimer (period);

upon event 〈 pp2pDeliver | src, [Heartbeat] 〉 do
alive := alive ∪ {src};

2.5.5 Eventual Leader Election

As we discussed earlier, instead of focusing on crashed processes, it may
be better to look at correct ones. In particular, it is sometimes convenient to
elect a correct process that will perform certain computations on behalf of the
others. With a perfect failure detector, one could implement a perfect leader
election abstraction with the properties of Module 2.6. This is impossible
with an eventually perfect failure detector (see the exercises). Instead, what
we can implement is a weaker leader election which ensures the unicity of the
leader only eventually. As we will see later in the book, this abstraction is
useful within consensus algorithms.

Specification. The eventual leader detector abstraction, with the properties
(ELD1–2) stated in Module 2.8, and denoted by Ω, encapsulates a leader elec-
tion algorithm which ensures that eventually the correct processes will elect
the same correct process as their leader. Nothing precludes the possibility
for leaders to change in an arbitrary manner and for an arbitrary period of
time. Besides, many leaders might be elected during the same period of time
without having crashed. Once a unique leader is determined, and does not

2.5 Abstracting Time 55

Module 2.8 Interface and properties of the eventual leader detector

Module:

Name: EventualLeaderDetector (Ω).

Events:

Indication: 〈 trust | pi 〉: Used to notify that process pi is trusted to be
leader.

Properties:

ELD1: Eventual accuracy: There is a time after which every correct pro-
cess trusts some correct process.

ELD2: Eventual agreement: There is a time after which no two correct
processes trust different correct processes.

change again, we say that the leader has stabilized. Such a stabilization is
guaranteed by the specification of Module 2.8.

Algorithm: Elect Lower Epoch. With a crash-stop process abstraction,
Ω can be obtained directly from �P . Indeed, it is enough to trust the process
with the highest identifier among all processes that are not suspected by
�P . Eventually, and provided at least one process is correct, exactly one
correct process will be trusted by all correct processes. Interestingly, the
leader abstraction Ω can also be implemented with the process crash-recovery
abstraction, also using timeouts and assuming the system to be partially
synchronous.

Algorithm 2.7–2.8, called “Elect Lower Epoch”, implements Ω in both
crash-stop and crash-recovery models, assuming that at least one process is
correct. Remember that this implies, with a process crash-recovery abstrac-
tion, that at least one process does not ever crash, or eventually recovers and
never crashes again (in every execution of the algorithm).

In the algorithm, every process pi keeps track of how many times it
crashed and recovered, within an epoch integer variable. This variable, repre-
senting the epoch number of pi, is retrieved, incremented, and then stored in
stable storage whenever pi recovers from a crash. The goal of the algorithm
is to elect as a leader the active process with the lowest epoch, i.e., the one
that has crashed and recovered less times.

Process pi periodically sends to all processes a heartbeat message together
with its current epoch number. Besides, every process pi keeps a list of po-
tential leader processes, within the variable candidateset. Initially, at every
process pi, candidateset is empty. Then, any process that does communicate
with pi is included in candidateset. A process pj that communicates with
pi, after having recovered or being slow in communicating with pi, is simply
added again to candidateset, i.e., considered a potential leader for pi.

Initially, the leader for all processes is the same, and is process p1. After
every timeout delay, pi checks whether p1 can still be the leader. This test

56 2. Basic Abstractions

Algorithm 2.7 Elect Lower Epoch (initialization and recovery)

Implements:
EventualLeaderDetector (Ω).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 Init 〉 do
leader := p1;
trigger 〈 trust | leader 〉;
period := TimeDelay;
epoch := 0;
store(epoch);
forall pi ∈ Π do

trigger 〈 flp2pSend | pi, [Heartbeat, epoch] 〉;
candidateset := ∅;
startTimer (period);

upon event 〈 Recovery 〉 do
leader := p1;
trigger 〈 trust | leader 〉;
period := TimeDelay;
retrieve(epoch);
epoch := epoch + 1;
store(epoch);
forall pi ∈ Π do

trigger 〈 flp2pSend | pi, [Heartbeat, epoch] 〉;
candidateset := ∅;
startTimer (period);

is performed through a function select that returns one process from a set
of processes, or nothing if the set is empty. The function is the same at
all processes and returns the same process (identifier) for the same given set
(candidateset), in a deterministic manner and according to the following rule:
among processes with the lowest epoch number, the process with the lowest
identity is returned. This guarantees that, if a process pj is elected leader, and
pj keeps on crashing and recovering forever, pj will eventually be replaced by
a correct process. By definition, the epoch number of a correct process will
eventually stop increasing.

A process increases its timeout delay whenever it changes leader. This
guarantees that, eventually, if leaders keep changing because the timeout
delay is too short with respect to communication delays, the delay will keep
increasing until it becomes large enough for the leader to stabilize when the
system becomes synchronous.

Correctness. Consider the eventual accuracy property and assume by con-
tradiction that there is a time after which a correct process pi permanently
trusts the same faulty process, say, pj . There are two cases to consider (re-

2.5 Abstracting Time 57

Algorithm 2.8 Elect Lower Epoch (election)

upon event 〈 Timeout 〉 do
newleader = select(candidateset);
if (leader �= newleader) then

period := period + Δ;
leader := newleader;
trigger 〈 trust | leader 〉;

forall pi ∈ Π do
trigger 〈 flp2pSend | pi, [Heartbeat, epoch] 〉;

candidateset := ∅;
startTimer (period);

upon event 〈 flp2pDeliver | src, [Heartbeat, epc] 〉 do
if exists (s, e) ∈ candidateset such that (s=src) ∧ (e<epc) then

candidateset := candidateset \ {(s, e)};
candidateset := candidateset ∪ {(src, epc)};

member that we consider a crash-recovery process abstraction): (1) process pj

eventually crashes and never recovers again, or (2) process pj keeps crashing
and recovering forever.

Consider case (1). Since pj crashes and does not ever recover again, pj

will send its heartbeat messages to pi only a finite number of times. Due
to the no creation and finite duplication properties of the underlying links
(fair-loss), there is a time after which pi stops delivering such messages from
pj . Eventually, pj will be excluded from the set (candidateset) of potential
leaders for pi, and pi will elect a new leader.

Consider now case (2). Since pj keeps on crashing and recovering forever,
its epoch number will keep on increasing forever. If pk is a correct process,
then there is a time after which its epoch number will be lower than that
of pj . After this time, either (2.1) pi will stop delivering messages from pj ,
and this can happen if pj crashes and recovers so quickly that it does not
have the time to send enough messages to pi (remember that, with fair-loss
links, a message is guaranteed to be delivered by its target only if it is sent
infinitely often), or (2.2) pi delivers messages from pj but with higher epoch
numbers than those of pk.

In both cases, pi will stop trusting pj . Process pi will eventually trust
only correct processes.

Consider now the eventual agreement property. We need to explain why
there is a time after which no two correct processes are trusted by two other
correct processes. Consider the subset of correct processes in a given execu-
tion S. Consider, furthermore, the time after which (a) the system becomes
synchronous, (b) the processes in S never crash again, (c) their epoch num-
bers stop increasing at every process, and (d) for every correct process pi and
every faulty process pj , pi stops delivering messages from pj , or pj’s epoch
number at pi gets strictly larger than the largest epoch number of S’s pro-

58 2. Basic Abstractions

cesses at pi. Due to the assumptions of a partially synchronous system, the
properties of the underlying fair-loss channels, and the algorithm, such time
will eventually be reached. After it is reached, every correct process that is
trusted by a correct process will be one of the processes in S. Due to the
function select, all correct processes will trust the same process within this
set.

2.6 Distributed System Models

A combination of (1) a process abstraction, (2) a link abstraction, and (pos-
sibly) (3) a failure detector abstraction defines a distributed-system model.
In the following, we discuss several models that will be considered through-
out this book to reason about distributed-programming abstractions and the
algorithms used to implement them. We will also discuss some important
properties of abstraction specifications and algorithms that will be useful
reasoning tools for the following chapters.

2.6.1 Combining Abstractions

Clearly, we will not consider all possible combinations of basic abstractions.
On the other hand, it is interesting to discuss more than one possible com-
bination to get an insight into how certain assumptions affect algorithm’s
design. We have selected five specific combinations to define several different
models studied in this book.

• Fail-stop. We consider the crash-stop process abstraction, where the pro-
cesses execute the deterministic algorithms assigned to them, unless they
possibly crash, in which case they do not recover. Links are considered to
be perfect. Finally, we assume the existence of a perfect failure detector
(P) (Module 2.5). As the reader will have the opportunity to observe, when
comparing algorithms in this model with algorithms in the four other mod-
els discussed below, making these assumptions (i.e., considering a fail-stop
model) substantially simplifies the design of distributed algorithms.

• Fail-silent. We also consider here the crash-stop process abstraction to-
gether with perfect links. Nevertheless, we do not assume here any failure
detection abstraction. That is, processes have no means to get any infor-
mation about other processes having crashed.

• Fail-noisy. This case is somehow intermediate between the two previous
models. We also consider here the crash-stop process abstraction together
with perfect links. In addition, we assume here the existence of the even-
tually perfect failure detector (�P) of Module 2.7 or the eventual leader
detector (Ω) of Module 2.8.

2.6 Distributed System Models 59

• Fail-recovery. We consider here the crash-recovery process abstraction,
according to which processes may crash and later recover and still partic-
ipate in the algorithm. Algorithms devised with this basic abstraction in
mind have to deal with the management of stable storage and with the
difficulties of dealing with amnesia, i.e., the fact that a process may forget
what it did prior to crashing. Links are assumed to be stubborn and we
may rely on the eventual leader detector (Ω) of Module 2.8.

• Randomized. We will consider here a specific particularity in the process
abstraction: algorithms may not be deterministic. That is, the processes
may use a random oracle to choose among several steps to execute. Typ-
ically, the corresponding algorithms implement a given abstraction with
some (hopefully high) probability. Randomization is sometimes the only
way to solve certain problems or circumvent some inherent inefficiencies of
deterministic algorithms.

It is important to note that some of the abstractions we study cannot be
implemented in all models. For example, some the abstractions that we will
consider in Chapter 6 do not have fail-silent solutions, and it is not clear how
to devise meaningful randomized solutions to such abstractions. For other
abstractions, such solutions may exist but devising them is still an active
area of research. This is, for instance, the case for randomized solutions to
the shared memory abstractions we consider in Chapter 4.

2.6.2 Measuring Performance

When we present an algorithm that implements a given abstraction, we an-
alyze its cost mainly using two metrics: (1) the number of messages required
to terminate an operation of the abstraction, and (2) the number of com-
munication steps required to terminate such an operation. When evaluating
the performance of distributed algorithms in a crash-recovery model, besides
the number of communication steps and the number of messages, we also
consider (3) the number of accesses to stable storage (also called logs).

In general, we count the messages, communication steps, and disk accesses
in specific executions of the algorithm, specially executions when no failures
occur. Such executions are more likely to happen in practice and are those for
which the algorithms are optimized. It makes sense to plan for the worst, by
providing means in the algorithms to tolerate failures, and hope for the best,
by optimizing the algorithms for the case where failures do not occur. Algo-
rithms that have their performance go proportionally down when the number
of failures increases are sometimes called gracefully degrading algorithms.

Precise performance studies help select the most suitable algorithm for
a given abstraction in a specific environment and conduct real-time analy-
sis. Consider, for instance, an algorithm that implements the abstraction of
perfect communication links and hence ensures that every message sent by
a correct process to a correct process is eventually delivered by the latter.

60 2. Basic Abstractions

It is important to note here what such a property states in terms of timing
guarantees: for every execution of the algorithm, and every message sent in
that execution, there is a time delay within which the message is eventually
delivered. The time delay is, however, defined a posteriori. In practice one
would require that messages be delivered within some time delay defined a
priori, for every execution and possibly every message. To determine whether
a given algorithm provides this guarantee in a given environment, a careful
performance study needs to be conducted on the algorithm, taking into ac-
count various aspects of the environment, such as the operating system, the
scheduler, and the network. Such studies are out of the scope of this book. We
present algorithms that are applicable to a wide range of distributed systems,
where bounded delays cannot be enforced, and where specific infrastructure-
related properties, such as real-time demands, are not strictly required.

2.7 Hands-On

We now describe the implementation of some of the abstractions presented
in this chapter. However, before proceeding, we need to introduce some ad-
ditional components of the Appia framework.

2.7.1 Sendable Event

For the implementation of the protocols that we will be describing, we have
defined a specialization of the basic Appia event, called SendableEvent. The
interface of this event is presented in Listing 2.1.

Listing 2.1. SendableEvent interface

package appia.events;

public class SendableEvent extends Event implements Cloneable {
public Object dest;
public Object source;
protected Message message;

public SendableEvent();
public SendableEvent(Channel channel, int dir, Session source);
public SendableEvent(Message msg);
public SendableEvent(Channel channel, int dir, Session source, Message msg);

public Message getMessage();
public void setMessage(Message message);
public Event cloneEvent();

}

A SendableEvent owns three relevant attributes: a Message which contains
the data to be sent on the network, the source which identifies the sending
process, and the destination attribute which identifies the recipient processes.

Since our implementations are based on low-level protocols from the IP
family, processes will be identified by a tuple (IP address, port). Therefore,

2.7 Hands-On 61

both the source and the dest attributes should contain an object of type In-

etWithPort (used by Java TCP and UDP interface).

2.7.2 Message and Extended Message

The Message component is provided by the Appia framework to simplify the
task of adding and extracting protocol headers to/from the message payload.
Chunks of data can be added to or extracted from the message using the
auxiliary MsgBuffer data structure, depicted in Listing 2.2.

Listing 2.2. MsgBuffer interface

package appia.message;

public class MsgBuffer {
public byte[] data;
public int off ;
public int len;

public MsgBuffer();
public MsgBuffer(byte[] data, int off, int len);

}

The interface of the Message object is partially listed in Listing 2.3. Note
the methods to push and popped MsgBuffers to/from a message, as well as
methods to fragment and concatenate messages.

Listing 2.3. Message interface (partial)

package appia.message;

public class Message implements Cloneable {

public Message();

public int length();
public void peek(MsgBuffer mbuf);
public void pop(MsgBuffer mbuf);
public void push(MsgBuffer mbuf);
public void frag(Message m, int length);
public void join(Message m);
public Object clone() throws CloneNotSupportedException;

}

To ease the programming of distributed protocols in Java, the basic Mes-

sage class was extended to allow arbitrary objects to be pushed and popped.
The class that provides this extended functionality is the ExtendedMessage

class, whose interface is depicted in Listing 2.4. This is the class that we will
be using throughout this book.

Listing 2.4. ExtendedMessage interface (partial)

package appia.message;

public class ExtendedMessage extends Message {

62 2. Basic Abstractions

public ExtendedMessage(); {

public void pushObject(Object obj);
public void pushLong(long l);
public void pushInt(int i);
/∗ ... ∗/
public Object popObject();
public long popLong();
public int popInt();
/∗ ... ∗/
public Object peekObject();
public long peekLong();
public int peekInt();
/∗ ... ∗/
public Object clone() throws CloneNotSupportedException;

}

2.7.3 Fair-Loss Point-to-Point Links

The Fair-Loss Point-to-Point Links abstraction is implemented in Appia by
the UdpSimple protocol. The UdpSimple protocol uses UDP sockets as unre-
liable communication channels. When a UdpSimple session receives a Send-

ableEvent with the down direction (i.e., a transmission request) it extracts the
message from the event and pushes it to the UDP socket. When a message is
received from a UDP socket, a SendableEvent is created with the up direction.

2.7.4 Perfect Point-to-Point Links

The Perfect Point-to-Point Links abstraction is implemented in Appia by
the TcpBasedPerfectP2P protocol. As its name implies, this implementation is
based on the TCP protocol; more precisely, it uses TCP sockets as communi-
cation channels. When a TcpBasedPerfectP2P session receives a SendableEvent

with the down direction (i.e., a transmission request) it extracts the message
from the event and pushes it to the TCP socket. When a message is received
from a TCP socket, a SendableEvent is created with the up direction.

A TcpBasedPerfectP2P session automatically establishes a TCP connection
when requested to send a message to a given destination for the first time.
Therefore, a single session implements multiple point-to-point links.

It should be noted that, in pure asynchronous systems, this implementa-
tion is just an approximation of the Perfect Point-to-Point Link abstraction.
In fact, TCP includes acknowledgments and retransmission mechanisms (to
recover from omissions in the network). However, if the other endpoint is
unresponsive, TCP breaks the connection, assuming that the corresponding
node has crashed. Therefore, TCP makes synchronous assumptions about
the system and fails to deliver the messages when it erroneously “suspects”
correct processes.

2.7 Hands-On 63

2.7.5 Perfect Failure Detector

In our case, the Perfect Failure Detector is implemented by the TcpBasedPFD,
which is used only with the TcpBasedPerfectP2P protocol described above, built
using TCP channels. When a TCP socket is closed, the protocol that imple-
ments TcpBasedPerfectP2P sends an event to the Appia channel. This event is
accepted by the TcpBasedPFD protocol, which sends a Crash event to notify
other layers. The implementation of this notification is shown in Listing 2.5.
The protocols that use the TcpBasedPFD must declare that they will accept
(and process) the Crash event generated by the TcpBasedPFD module. This is
illustrated in the implementation of the reliable broadcast protocols, which
are described in the next chapter.

To notify other layers of a closed socket, the TcpBasedPerfectP2P protocol
must first create the corresponding TCP sockets. The way the TcpBasedPer-

fectP2P is implemented, these sockets are opened on demand, i.e., when there
is the need to send/receive something from a remote peer. To ensure that
these sockets are created, the TcpBasedPFD session sends a message to all
other processes when it is started.

Note that the TcpBasedPFD abstraction assumes that all processes are
started before it starts operating. Therefore, the user must start all pro-
cesses before activating the perfect failure detector. Otherwise, the detector
may detect as failed processes that have not yet been launched. Hence, in
subsequent chapters, when using the perfect failure detector in conjunction
with other protocols, the user will be requested to explicitly start the per-
fect failure detector. In most test applications, this is achieved by issuing the
startpfd request on the command line. The implementation is illustrated in
Listing 2.5.

Listing 2.5. Perfect failure detector implementation

package appia.protocols.tutorialDA.tcpBasedPFD;

public class TcpBasedPFDSession extends Session {
private Channel channel;
private ProcessSet processes;
private boolean started;

public TcpBasedPFDSession(Layer layer) {
super(layer);
started = false;

}

public void handle(Event event) {
if (event instanceof TcpUndeliveredEvent)

notifyCrash((TcpUndeliveredEvent) event);
else if (event instanceof ChannelInit)

handleChannelInit((ChannelInit) event);
else if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent) event);
else if (event instanceof PFDStartEvent)

handlePFDStart((PFDStartEvent) event);
}

private void handleChannelInit(ChannelInit init) {

64 2. Basic Abstractions

channel = init.getChannel();
init .go();

}

private void handleProcessInit(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();

}

private void handlePFDStart(PFDStartEvent event) {
started = true;
event.go();
CreateChannelsEvent createChannels =

new CreateChannelsEvent(channel,Direction.DOWN,this);
createChannels.go();

}

private void notifyCrash(TcpUndeliveredEvent event) {
if (started){

SampleProcess p = processes.getProcess((InetWithPort) event.who);
if (p.isCorrect ()) {

p.setCorrect(false);
Crash crash =

new Crash(channel,Direction.UP,this,p.getProcessNumber());
crash.go();

}
}

}
}

2.8 Exercises

Exercise 2.1 Explain under which assumptions the fail-recovery and the
fail-silent models are similar (note that in both models any process can commit
omission failures).

Exercise 2.2 Does the following statement satisfy the synchronous process-
ing assumption: on my server, no request ever takes more than one week to
be processed?

Exercise 2.3 Can we implement the perfect failure detector in a model where
the processes could commit omission failures and where we cannot not bound
the number of such failures? What if this number is bounded but unknown?
What if processes that can commit omission failures commit a limited and
known number of such failures and then crash?

Exercise 2.4 In a fail-stop model, can we determine a priori a time period
such that, whenever a process crashes, all correct processes suspect this process
to have crashed after this period?

Exercise 2.5 In a fail-stop model, which of the following properties are
safety properties?

2.9 Solutions 65

1. every process that crashes is eventually detected;
2. no process is detected before it crashes;
3. no two processes decide differently;
4. no two correct processes decide differently;
5. every correct process decides before t time units;
6. if some correct process decides, then every correct process decides.

Exercise 2.6 Consider any algorithm A that implements a distributed pro-
gramming abstraction M using a failure detector D that is assumed to be
eventually perfect. Can A violate the safety property of M if failure detector
D is not eventually perfect, e.g., D permanently outputs the empty set?

Exercise 2.7 Specify a distributed programming abstraction M and an algo-
rithm A implementing M using a failure detector D that is supposed to satisfy
a set of properties, such that the liveness of M is violated if D does not satisfy
its properties.

Exercise 2.8 Is there an algorithm that implements the leader election ab-
straction with the eventually perfect failure detector?

2.9 Solutions

Solution 2.1 When processes crash, they lose the content of their volatile
memory and they commit omissions. If we assume (1) that processes do have
stable storage and store every update on their state within the stable storage,
and (2) that they are not aware they have crashed and recovered, then the
two models are similar. �

Solution 2.2 Yes. This is because the time it takes for the process (i.e. the
server) to process a request is bounded and known: it is one week. �

Solution 2.3 It is impossible to implement a perfect failure detector if the
number of omissions failures is unknown. Indeed, to guarantee the strong
completeness property of the failure detector, a process p must detect the
crash of another one, q, after some timeout delay. No matter how this delay
is chosen, it can exceed the transmission delay times the number of omissions
that q commits. This would lead to violating the strong accuracy property
of the failure detector. If the number of possible omissions is known in a
synchronous system, we can use it to calibrate the timeout delay of the pro-
cesses to accurately detect failures. If the delay exceeds the maximum time
during which a process can commit omission failures, without having actually
crashed, it can safely detect the process as having crashed. �

66 2. Basic Abstractions

Solution 2.4 No. The perfect failure detector only ensures that processes
that crash are eventually detected: there is no bound on the time it takes for
these crashes to be detected. This points out a fundamental difference be-
tween algorithms assuming a synchronous system and algorithms assuming
a perfect failure detector (fail-stop model). In a precise sense, a synchronous
model is strictly stronger. �

Solution 2.5

1. Eventually, every process that crashes is detected. This is a liveness prop-
erty; we can never exhibit a time t in some execution and state that the
property is violated. There is always the hope that eventually the failure
detector detects the crashes.

2. No process is detected before it crashes. This is a safety property. If a
process is detected at time t before it has crashed, then the property is
violated at time t.

3. No two processes decide differently. This is also a safety property, because
it can be violated at some time t and never be satisfied again.

4. No two correct processes decide differently. If we do not bound the num-
ber of processes that can crash, then the property turns out to be a
liveness property. Indeed, even if we consider some time t at which two
processes have decided differently, then there is always some hope that,
eventually, some of the processes may crash and validate the property.
This remains actually true even if we assume that at least one process
is correct. Assume now that we bound the number of failures, say, by
F < N − 1. The property is not any more a liveness property. Indeed, if
we consider a partial execution and a time t at which N − 2 processes
have crashed and the two remaining processes decide differently, then
there is no way we can extend this execution and validate the property.
But is the property a safety property? This would mean that in any ex-
ecution where the property does not hold, there is a partial execution of
it, such that no matter how we extend it, the property would still not
hold. Again, this is not true. To see why, consider the execution where
less than F − 2 processes have crashed and two correct processes decide
differently. No matter what partial execution we consider, we can extend
it by crashing one of the two processes that have decided differently and
validate the property. To conclude, in the case where F < N − 1, the
property is the union of both a liveness and a safety property.

5. Every correct process decides before t time units. This is a safety prop-
erty: it can be violated at some l, where all correct processes have exe-
cuted t of their own steps. If violated, at that time, there is no hope that
it will be satisfied again.

6. If some correct process decides, then every correct process decides. This is
a liveness property: there is always the hope that the property is satisfied.
It is interesting to note that the property can actually be satisfied by

2.10 Historical Notes 67

having the processes not do anything. Hence, the intuition that a safety
property is one that is satisfied by doing nothing may be misleading.

�

Solution 2.6 No. Assume by contradiction that A violates the safety prop-
erty of M if D does not satisfy its properties. Because of the very nature of
a safety property, there is a time t and an execution R of the system such
that the property is violated at t in R. Assume now that the properties of
the eventually perfect failure detector hold after t in a run R′ that is similar
to R up to time t. A would violate the safety property of M in R′, even if
the failure detector is eventually perfect. �

Solution 2.7 An example of such abstraction is simply the eventually per-
fect failure detector. Note that such abstraction has no safety property. �

Solution 2.8 Recall that the leader election abstraction is defined with the
following properties: (1) Either there is no correct process, or some correct
process is eventually the leader; and (2) If a process is leader, then all pre-
viously elected leaders have crashed. It is impossible to implement such an
abstraction with the eventually perfect failure detector, as we discuss below.

Consider an execution R1 where no process fails; let p be the first process
elected leader, and let t be the time at which p first declares itself leader.
Consider an execution R2, similar to R until time t, but where p crashes
right after time t. Due to the first property of the leader election abstrac-
tion, another process is eventually elected. Denote that process by q, and let
t′ > t be the time at which q first declares itself leader. With an eventually
perfect failure detector, and until time t′, there is no way to distinguish such
execution from one, which we denote R3, where p is actually correct (but
whose messages got delayed until after t′). This execution R3 violates the
specification of the leader election abstraction (i.e., its second property). �

2.10 Historical Notes

• In 1978, the notions of causality and logical time were introduced in prob-
ably the most influential paper in the area of distributed computing by
Leslie Lamport (1978).

• In 1982, agreement problems were considered in an arbitrary fault model,
also called the malicious or the Byzantine model (Lamport, Shostak, and
Pease 1982).

• In 1984, algorithms assuming that processes can only fail by crashing, and
that every process has accurate information about which processes have

68 2. Basic Abstractions

crashed (perfect failure detector) were called fail-stop algorithms (Schnei-
der, Gries, and Schlichting 1984).

• In 1985, a fundamental result in distributed computing was established. It
was proved that, even a very simple form of agreement, namely, consensus,
is impossible to solve with a deterministic algorithm in an asynchronous
system even if only one process fails, and it can only do so by crashing (Fis-
cher, Lynch, and Paterson 1985).

• Also in 1985, the notions of safety and liveness were singled out. It was
shown that any property of a distributed system execution can be viewed
as a composition of a liveness and a safety property (Alpern and Schneider
1985).

• In 1988 (Dwork, Lynch, and Stockmeyer 1988), intermediate models be-
tween the synchronous and the asynchronous model, called partially syn-
chronous models, were introduced.

• In 1989, the use of synchrony assumptions to build leasing mechanisms was
explored (Gray and Cheriton 1989).

• In 1991, it was observed that, when solving various problems, in partic-
ular consensus, timing assumptions were mainly used to detect process
crashes (Chandra and Toueg 1996; Chandra, Hadzilacos, and Toueg 1996).
This observation led to the definition of an abstract notion of failure de-
tector that encapsulates timing assumptions. For instance, the very fact
that consensus can be solved in partially synchronous systems (Dwork,
Lynch, and Stockmeyer 1988) is translated, in the failure detector ter-
minology (Chandra, Hadzilacos, and Toueg 1996), into consensus can be
solved even with unreliable failure detectors (e.g., eventually perfect failure
detectors).

• The idea of stubborn communication channels was proposed in 1997 (Guer-
raoui, Oliveria, and Schiper 1997), as a pragmatic variant of perfect
channels for the fail-recovery model, yet at a higher level than fair-loss
links (Lynch 1996).

• In 2000, the notion of unreliable failure detector was precisely defined (Guer-
raoui 2000). Algorithms that rely on such failure detectors have been called
indulgent algorithms (Guerraoui 2000; Dutta and Guerraoui 2002; Guer-
raoui and Raynal 2004).

• The notion of failure detector was also extended to the fail-recovery
model (Aguilera, Chen, and Toueg 2000).

3. Reliable Broadcast

He said: “I could have been someone”;
She replied: “So could anyone.”

(The Pogues)

This chapter covers the specifications of broadcast communication abstrac-
tions. These are used to disseminate information among a set of processes
and differ according to the reliability of the dissemination. For instance, best-
effort broadcast guarantees that all correct processes deliver the same set
of messages if the senders are correct. Stronger forms of reliable broadcast
guarantee this property even if the senders crash while broadcasting their
messages.

We will consider several related abstractions: best-effort broadcast, (regu-
lar) reliable broadcast, uniform reliable broadcast, logged broadcast, stubborn
broadcast, probabilistic broadcast, and causal broadcast. For each of these ab-
stractions, we will provide one or more algorithms implementing it, and these
will cover the different models addressed in this book.

3.1 Motivation

3.1.1 Client-Server Computing

In traditional distributed applications, interactions are often established be-
tween two processes. Probably the most representative of this sort of inter-
action is the now classic client-server scheme. According to this model, a
server process exports an interface to several clients. Clients use the inter-
face by sending a request to the server and by later collecting a reply. Such
interaction is supported by point-to-point communication protocols. It is ex-
tremely useful for the application if such a protocol is reliable. Reliability
in this context usually means that, under some assumptions (which are, by

70 3. Reliable Broadcast

the way, often not completely understood by most system designers), mes-
sages exchanged between the two processes are not lost or duplicated, and are
delivered in the order in which they were sent. Typical implementations of
this abstraction are reliable transport protocols such as TCP (Transmission
Control Protocol (Postel 1981)). By using a reliable point-to-point commu-
nication protocol, the application is free from dealing explicitly with issues
such as acknowledgments, timeouts, message retransmissions, flow control,
and a number of other issues that are encapsulated by the protocol interface.

3.1.2 Multi-participant Systems

As distributed applications become bigger and more complex, interactions
are no longer limited to bilateral relationships. There are many cases where
more than two processes need to operate in a coordinated manner. Consider,
for instance, a multiuser virtual environment where several users interact in
a virtual space. These users may be located at different physical places, and
they can either directly interact by exchanging multimedia information, or
indirectly by modifying the environment.

It is convenient to rely here on broadcast abstractions. These allow a pro-
cess to send a message within a group of processes, and make sure that the
processes agree on the messages they deliver. A naive transposition of the
reliability requirement from point-to-point protocols would require that no
message sent to the group be lost or duplicated, i.e., the processes agree to
deliver every message broadcast to them. However, the definition of agree-
ment for a broadcast primitive is not a simple task. The existence of multiple
senders and multiple recipients in a group introduces degrees of freedom that
do not exist in point-to-point communication. Consider, for instance, the case
where the sender of a message fails by crashing. It may happen that some
recipients deliver the last message sent while others do not. This may lead to
an inconsistent view of the system state by different group members.

Roughly speaking, broadcast abstractions provide reliability guarantees
ranging from best-effort, which only ensures delivery among all correct pro-
cesses if the sender does not fail, through reliable, which, in addition, ensures
all-or-nothing delivery semantics, even if the sender fails, to totally ordered,
which furthermore ensures that the delivery of messages follow the same
global order, and terminating, which ensures that the processes either deliver
a message or are eventually aware that they should never deliver the message.
In this chapter, we will focus on best-effort and reliable broadcast abstrac-
tions. Totally ordered and terminating forms of broadcast will be considered
in later chapters.

3.2 Best-Effort Broadcast 71

Module 3.1 Interface and properties of best-effort broadcast

Module:

Name: BestEffortBroadcast (beb).

Events:

Request: 〈 bebBroadcast | m 〉: Used to broadcast message m to all
processes.

Indication: 〈 bebDeliver | src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

BEB1: Best-effort validity: For any two processes pi and pj . If pi and pj

are correct, then every message broadcast by pi is eventually delivered by
pj .

BEB2: No duplication: No message is delivered more than once.

BEB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

3.2 Best-Effort Broadcast

A broadcast abstraction enables a process to send a message, in a one-shot
operation, to all processes in a system, including itself. We give here the
specification and algorithm for a broadcast communication primitive with a
weak form of reliability, called best-effort broadcast.

3.2.1 Specification

With best-effort broadcast, the burden of ensuring reliability is only on the
sender. Therefore, the remaining processes do not have to be concerned with
enforcing the reliability of received messages. On the other hand, no deliv-
ery guarantees are offered in case the sender fails. Best-effort broadcast is
characterized by the properties BEB1-3 depicted in Module 3.1. BEB1 is a
liveness property whereas BEB2 and BEB3 are safety properties. Note that
broadcast messages are implicitly addressed to all processes. Remember also
that messages are uniquely identified.

3.2.2 Fail-Silent Algorithm: Basic Broadcast

We provide here an algorithm (Algorithm 3.1) that implements best-effort
broadcast using perfect links. This algorithm does not make any assumption
on failure detection: it is a fail-silent algorithm. The idea is pretty simple.
Broadcasting a message simply consists of sending the message on top of
perfect links to every process in the system, as illustrated by Figure 3.1
(in the figure, white arrowheads represent request/indication events at the

72 3. Reliable Broadcast

Algorithm 3.1 Basic Broadcast

Implements:
BestEffortBroadcast (beb).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 bebBroadcast | m 〉 do
forall pi ∈ Π do

trigger 〈 pp2pSend | pi, m 〉;

upon event 〈 pp2pDeliver | pi, m 〉 do
trigger 〈 bebDeliver | pi, m 〉;

p1

p2

p3

p4

bebBroadcast

bebDeliver

bebDeliver

bebDeliver

bebDeliver

Fig. 3.1: Sample execution of basic broadcast

module interface and black arrowheads represent message exchanges). In the
algorithm, called “Basic Broadcast”, as long as the sender of a message does
not crash, the properties of perfect links ensure that all correct processes
eventually deliver the message.

Correctness. The properties of best-effort broadcast are trivially derived from
the properties of the underlying perfect point-to-point links. No duplication
and no creation are directly derived from PL2 and PL3. Validity is derived
from PL1 and the fact that the sender sends the message to every other
process in the system.

Performance. For every message that is broadcast, the algorithm requires a
single communication step and exchanges N messages.

3.3 Regular Reliable Broadcast

Best-effort broadcast ensures the delivery of messages as long as the sender
does not fail. If the sender fails, the processes might disagree on whether

3.3 Regular Reliable Broadcast 73

Module 3.2 Interface and properties of regular reliable broadcast

Module:

Name: (regular)ReliableBroadcast (rb).

Events:

Request: 〈 rbBroadcast | m 〉: Used to broadcast message m.

Indication: 〈 rbDeliver | src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

RB1: Validity: If a correct process pi broadcasts a message m, then pi

eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

RB4: Agreement: If a message m is delivered by some correct process pi,
then m is eventually delivered by every correct process pj .

or not to deliver the message. Actually, even if the process sends a message
to all processes before crashing, the delivery is not ensured because perfect
links do not enforce delivery when the sender fails. We now consider the case
where agreement is ensured even if the sender fails. We do so by introducing
a broadcast abstraction with a stronger form of reliability, called (regular)
reliable broadcast.

3.3.1 Specification

Intuitively, the semantics of a reliable broadcast algorithm ensure that correct
processes agree on the set of messages they deliver, even when the senders
of these messages crash during the transmission. It should be noted that a
sender may crash before being able to transmit the message, in which case no
process will deliver it. The specification is given in Module 3.2. This extends
the specification of Module 3.1 with a new liveness property: agreement. (The
very fact that this is a liveness property might seem counterintuitive, as the
property can be achieved by not having any process ever deliver any message.
Strictly speaking, it is, however, a liveness property as it can always be en-
sured in extensions of finite executions. We will see other forms of agreement
that are safety properties later in the book.)

3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast

We now show how to implement regular reliable broadcast in a fail-stop
model. In our algorithm, depicted in Algorithm 3.2, which we have called

74 3. Reliable Broadcast

“Lazy Reliable Broadcast”, we make use of the best-effort abstraction de-
scribed in the previous section as well as the perfect failure detector module
introduced earlier.

To rbBroadcast a message, a process uses the best-effort broadcast prim-
itive to disseminate the message to all. Note that this implementation adds
some protocol headers to the messages exchanged. In particular, the imple-
mentation adds a message descriptor (“Data”) and the original source of
the message to the message header. This is denoted by [Data, sm, m] in the
algorithm. A process that gets the message (i.e., bebDelivers the message)
delivers it immediately (i.e., rbDelivers it). If the sender does not crash, then
the message will be rbDelivered by all correct processes. The problem is that
the sender might crash. In this case, the process that delivers the message
from some other process can detect that crash and relays the message to all.
We note that this is a language abuse: in fact, the process relays a copy of
the message (and not the message itself).

Our algorithm is said to be lazy in the sense that it retransmits a message
only if the original sender has been detected to have crashed.

It is important to notice that, strictly speaking, two kinds of events can
force a process to retransmit a message. (1) When the process detects the
crash of the source, and (2) when the process bebDelivers a message and
realizes that the source has already been detected to have crashed (i.e., the
source is not anymore in the set correct). This might lead to duplicate re-
transmissions when a process bebDelivers a message from a source that fails,
as we explain below. It is pretty clear that a process that detects the crash
of a source needs to retransmit the messages already bebDelivered from that
source. On the other hand, a process might bebDeliver a message from a
source after it detected the crash of that source: it is thus necessary to check
for the retransmission even when no new crash is detected.

Correctness. The no creation (resp. validity) property of our reliable broad-
cast algorithm follows from the no creation (resp. validity) property of the
underlying best effort broadcast primitive. The no duplication property of re-
liable broadcast follows from our use of a variable delivered that keeps track
of the messages that have been rbDelivered at every process. Agreement fol-
lows here from the validity property of the underlying best effort broadcast
primitive, from the fact that every process relays every message it rbDelivers
when it suspects the sender, and from the use of a perfect failure detector.

Performance. If the initial sender does not crash, to rbDeliver a message
to all processes, the algorithm requires a single communication step and N
messages. Otherwise, N 2 and, in the worst case (if the processes crash in
sequence), N steps are required. .

3.3.3 Fail-Silent Algorithm: Eager Reliable Broadcast

In our “Lazy Reliable Broadcast” algorithm (Algorithm 3.2), if the accuracy
property of the failure detector is not satisfied, then the processes might be

3.3 Regular Reliable Broadcast 75

Algorithm 3.2 Lazy Reliable Broadcast

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
delivered := ∅;
correct := Π ;
forall pi ∈ Π do

from[pi] := ∅;

upon event 〈 rbBroadcast | m 〉 do
trigger 〈 bebBroadcast | [Data, self, m] 〉;

upon event 〈 bebDeliver | pi, [Data, sm, m] 〉 do
if (m �∈ delivered) then

delivered := delivered ∪ {m}
trigger 〈 rbDeliver | sm, m 〉;
from[pi] := from[pi] ∪ {(sm, m)}
if (pi �∈ correct) then

trigger 〈 bebBroadcast | [Data, sm, m] 〉;

upon event 〈 crash | pi 〉 do
correct := correct \ {pi}
forall (sm, m) ∈ from[pi] do

trigger 〈 bebBroadcast | [Data, sm, m] 〉;

relaying messages when it is not really necessary. This wastes resources but
does not impact correctness. On the other hand, we rely on the completeness
property of the failure detector to ensure the broadcast agreement. If the
failure detector does not ensure completeness, then the processes might not
be relaying messages that they should be relaying (e.g., messages broadcast
by processes that crashed), and hence might violate agreement.

In fact, we can circumvent the need for a failure detector (i.e., the need for
its completeness property) by adopting an eager scheme: every process that
gets a message relays it immediately. That is, we consider the worst case,
where the sender process might have crashed, and we relay every message.
This relaying phase is exactly what guarantees the agreement property of
reliable broadcast. The resulting algorithm (Algorithm 3.3) is called “Eager
Reliable Broadcast.”

The algorithm assumes a fail-silent model and does not use any failure
detector: it uses only the best-effort broadcast primitive described in Sec-
tion 3.2. In Figure 3.2a we illustrate how the algorithm ensures agreement
even if the sender crashes: process p1 crashes and its message is not bebDeliv-

76 3. Reliable Broadcast

Algorithm 3.3 Eager Reliable Broadcast

Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).

upon event 〈 Init 〉 do
delivered := ∅;

upon event 〈 rbBroadcast | m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver | self, m 〉;
trigger 〈 bebBroadcast | [Data, self, m] 〉;

upon event 〈 bebDeliver | pi, [Data, sm, m] 〉 do
if m �∈ delivered do

delivered := delivered ∪ { m }
trigger 〈 rbDeliver | sm, m 〉;
trigger 〈 bebBroadcast | [Data, sm, m] 〉;

ered by p3 and p4. However, since p2 retransmits the message (bebBroadcasts
it), the remaining processes also bebDeliver it and then rbDeliver it. In our
“Lazy Reliable Broadcast” algorithm, p2 will be relaying the message only
after it has detected the crash of p1.

Correctness. All properties, except agreement, are ensured as in the “Lazy
Reliable Broadcast.” The agreement property follows from the validity prop-
erty of the underlying best-effort broadcast primitive and from the fact that
every process immediately relays every message it rbDelivers.

Performance. In the best case, to rbDeliver a message to all processes, the
algorithm requires a single communication step and N 2 messages. In the
worst case (if processes crash in sequence), N steps and N 2 messages are
required to terminate the algorithm.

3.4 Uniform Reliable Broadcast

With regular reliable broadcast, the semantics just require correct processes
to deliver the same set of messages, regardless of what messages have been
delivered by faulty processes. In particular, a process that rbBroadcasts a
message might rbDeliver it and then crash, without any process having even
bebDelivered that message. This scenario can also happen in both reliable
broadcast algorithms we presented (eager and lazy). It is thus possible that no
other process, including correct ones, ever rbDelivers that message. We now
introduce a stronger definition of reliable broadcast, called uniform reliable

3.4 Uniform Reliable Broadcast 77

Module 3.3 Interface and properties of uniform reliable broadcast

Module:

Name: UniformReliableBroadcast (urb).

Events:

〈 urbBroadcast | m 〉, 〈 urbDeliver | src, m 〉, with the same meaning and
interface as in regular reliable broadcast.

Properties:

RB1–RB3: Same as in regular reliable broadcast.

URB4: Uniform Agreement: If a message m is delivered by some process
pi (whether correct or faulty), then m is also eventually delivered by every
correct process pj .

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

rbDeliver

rbDeliver

(a)

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

(b)

Fig. 3.2: Sample executions of reliable broadcast

broadcast. This definition is stronger in the sense that it guarantees that the
set of messages delivered by faulty processes is always a subset of the messages
delivered by correct processes.

3.4.1 Specification

Uniform reliable broadcast differs from reliable broadcast by the formulation
of its agreement property. The specification is given in Module 3.3.

Uniformity is typically important if processes might interact with the
external world, e.g., print something on a screen, authorize the delivery of
money through an ATM, or trigger a rocket. In this case, the fact that a
process has delivered a message is important, even if the process has crashed
afterward. This is because the process, before crashing, could have commu-
nicated with the external world after having delivered the message. The pro-
cesses that did not crash should also be aware of that message having been
delivered, and of the possible external action having been performed.

78 3. Reliable Broadcast

Figure 3.2b depicts an execution of a reliable broadcast algorithm that
does not ensure uniformity. Both processes p1 and p2 rbDeliver the message
as soon as they bebDeliver it, but crash before relaying the message to the re-
maining processes. Still, processes p3 and p4 are consistent among themselves
(neither has rbDelivered the message).

3.4.2 Fail-Stop Algorithm: All-Ack Uniform Reliable Broadcast

Basically, our “Lazy Reliable Broadcast” and “Eager Reliable Broadcast”
algorithms do not ensure uniform agreement because a process may rbDeliver
a message and then crash. Even if this process has relayed its message to all
processes (through a bebBroadcast primitive), the message might not reach
any of the remaining processes. Note that even if we considered the same
algorithms and replaced the best-effort broadcast abstraction with a reliable
broadcast one, we would still not implement a uniform broadcast abstraction.
This is because a process delivers a message before relaying it to all processes.

Algorithm 3.4, named “All-Ack Uniform Reliable Broadcast”, implements
the uniform version of reliable broadcast in the fail-stop model. Basically, in
this algorithm, a process delivers a message only when it knows that the
message has been seen (bebDelivered) by all correct processes. All processes
relay the message once they have seen it. Each process keeps a record of which
processes have already retransmitted a given message. When all correct pro-
cesses have retransmitted the message, all correct processes are guaranteed
to deliver the message, as illustrated in Figure 3.3.

Notice that the last upon statement of Algorithm 3.4 is different from the
others we have considered so far in other algorithms: it is not triggered by an
external event, i.e., originating from a different layer. Instead, it is triggered
by an internal event originating from a predicate (canDeliver) becoming true.

Correctness. Integrity is directly derived from the properties of the underly-
ing best-effort broadcast primitive. The no creation property is derived from
that of the underlying best-effort broadcast. No duplication follows from the
use of the delivered variable. As for validity, we rely on the completeness
property of the failure detector and the validity property of the best-effort
broadcast. Uniform agreement is ensured by having each process wait to urb-
Deliver a message until all correct processes have bebDelivered the message.
We rely here on the accuracy property of the perfect failure detector.

Performance. In the best case, the algorithm requires two communication
steps to urbDeliver a message to all processes. In the worst case, if the pro-
cesses crash in sequence, N + 1 steps are required. The algorithm exchanges
N2 messages in each step. Therefore, uniform reliable broadcast requires one
step more to deliver a message than its regular counterpart.

3.4 Uniform Reliable Broadcast 79

Algorithm 3.4 All-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

function canDeliver(m) returns boolean is
return (correct ⊆ ackm);

upon event 〈 Init 〉 do
delivered := pending := ∅;
correct := Π ;
forall m do ackm := ∅;

upon event 〈 urbBroadcast | m 〉 do
pending := pending ∪ {(self, m)};
trigger 〈 bebBroadcast | [Data, self, m] 〉;

upon event 〈 bebDeliver | pi, [Data, sm, m] 〉 do
ackm := ackm ∪ {pi};
if ((sm, m) �∈ pending) then

pending := pending ∪ {(sm, m)};
trigger 〈 bebBroadcast | [Data, sm, m] 〉;

upon event 〈 crash | pi 〉 do
correct := correct \{pi};

upon exists (sm, m) ∈ pending such that canDeliver(m) ∧ m �∈ delivered do
delivered := delivered ∪ {m};
trigger 〈 urbDeliver | sm, m 〉;

p1

p2

p3

p4

rbBroadcast

rbDeliver

rbDeliver

rbDeliver

Fig. 3.3: Sample execution of all-ack uniform reliable broadcast

3.4.3 Fail-Silent Algorithm: Majority-Ack Uniform Reliable
Broadcast

The “All-Ack Uniform Reliable Broadcast” algorithm of Section 3.4.2 (Al-
gorithm 3.4) is not correct if the failure detector is not perfect. Uniform

80 3. Reliable Broadcast

Algorithm 3.5 Majority-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast (urb).

Extends:
All-Ack Uniform Reliable Broadcast (Algorithm 3.4).

Uses:
BestEffortBroadcast (beb).

function canDeliver(m) returns boolean is
return (|ackm| > N/2);

// Except for the function above, and the non-use of the
// perfect failure detector, same as Algorithm 3.4.

agreement would be violated if accuracy is not satisfied and validity would be
violated if completeness is not satisfied.

We now give a uniform reliable broadcast algorithm that does not rely
on a perfect failure detector but assumes a majority of correct processes.
We leave it as an exercise to show why the majority assumption is needed
in a fail-silent model, without any failure detector. Algorithm 3.5, called
“Majority-Ack Uniform Reliable Broadcast”, is similar to the previous “All-
Ack Uniform Reliable Broadcast” algorithm, except that processes do not
wait until all correct processes have seen a message (bebDelivered the mes-
sage), but only until a majority has seen the message. Hence, the algorithm is
a simple extension of the original one (Algorithm 3.4), except that we modify
the condition under which a message needs to be delivered.

Correctness. The no creation property follows from that of best-effort broad-
cast. The no duplication property follows from the use of the variable deliv-
ered.

To argue for the uniform agreement and validity properties, we first ob-
serve that if a correct process pi bebDelivers any message m, then pi urb-
Delivers m. Indeed, if pi is correct, and given that pi bebBroadcasts m (ac-
cording to the algorithm), then every correct process bebDelivers and hence
bebBroadcasts m. As we assume a correct majority, pi bebDelivers m from
a majority of the processes and urbDelivers it.

Consider now the validity property. If a correct process pi urbBroadcasts a
message m, then pi bebBroadcasts m and hence pi bebDelivers m: according
to the observation above, pi eventually urbDelivers m. Consider now uniform
agreement, and let pj be any process that urbDelivers m. To do so, pj must
have bebDelivered m from a majority of the processes. Due to the assumption
of a correct majority, at least one correct process must have bebBroadcast
m. Again, according to the observation above, all correct processes have beb-

3.5 Stubborn Broadcast 81

Delivered m, which implies that all correct processes eventually urbDeliver
m.

Performance. Similar to the “All-Ack Uniform Reliable Broadcast” algo-
rithm.

3.5 Stubborn Broadcast

We now consider broadcast abstractions in a setting where processes can
crash and recover, i.e., in the fail-recovery model. We first discuss the issue
underlying fail-recovery when broadcasting messages and then give examples
of specifications and underlying algorithms in this model.

3.5.1 Overview

It is first important to notice why the specifications we have considered for the
fail-stop and fail-silent models are not adequate for the fail-recovery model.
As we explain below, even the strongest of our specifications, uniform reliable
broadcast, does not provide useful semantics in a setting where processes that
crash can later recover and participate in the computation.

Consider a message m that is broadcast by some process pi. Consider,
furthermore, some other process pj that crashes at some instant, recovers,
and never crashes again. In the fail-recovery sense, process pj is correct. With
the semantics of uniform reliable broadcast however, it might happen that
pj delivers m, crashes without having processed m, and then recovers with
no memory of m. Ideally, there should be some way for process pj to find
out about m upon recovery, and hence to be able to execute any associated
action accordingly.

We start by presenting a generalization of the stubborn point-to-point
communication idea to the broadcast situation. Correct processes are sup-
posed to deliver all messages (broadcast by processes that did not crash) an
infinite number of times, and hence eventually deliver such messages upon
recovery. The corresponding specification is called stubborn broadcast.

3.5.2 Specification

The specification of stubborn broadcast we consider is given in Module 3.4,
and we illustrate here the idea through the best-effort case. Stronger abstrac-
tions (regular and uniform) of stubborn broadcast could also be obtained
accordingly. The key difference with the best-effort abstraction defined for
the fail-no-recovery settings is in the stubborn (perpetual) delivery (even by
recovered processes) of every message broadcast by a process that does not
crash. As a direct consequence, the no duplication property is not ensured.
The very fact that processes now have to deal with multiple deliveries is

82 3. Reliable Broadcast

Module 3.4 Interface and properties of stubborn best-effort broadcast

Module:

Name: StubbornBestEffortBroadcast (sbeb).

Events:

Request: 〈 sbebBroadcast | m 〉: Used to broadcast message m to all
processes.

Indication: 〈 sbebDeliver | src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

SBEB1: Best-effort validity: If a process pj is correct and another process
pi does not crash, then every message broadcast by pi is delivered by pj

an infinite number of times.

SBEB2: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

Algorithm 3.6 Basic Stubborn Broadcast

Implements:
StubbornBestEffortBroadcast (sbeb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 sbebBroadcast | m 〉 do
forall pi ∈ Π do

trigger 〈 sp2pSend | pi, m 〉;

upon event 〈 sp2pDeliver | src, m 〉 do
trigger 〈 sbebDeliver | delivered 〉;

the price to pay for saving expensive logging operations. Later on, we will
also discuss an alternative abstraction (logged broadcast) where the issue of
multiple deliveries is handled by logging messages.

3.5.3 Fail-Recovery Algorithm: Basic Stubborn Broadcast

Algorithm 3.6 implements stubborn best-effort broadcast using underlying
stubborn communication links.

Correctness. The properties of stubborn broadcast are derived in the algo-
rithm from the properties of stubborn links. In particular, validity is derived
from the fact that the sender sends the message to every other process in the
system.

Performance. The algorithm requires a single communication step for a pro-
cess to deliver a message, and exchanges at least N messages. Of course,

3.6 Logged Best-Effort Broadcast 83

stubborn channels may retransmit the same message several times and, in
practice, an optimization mechanism is needed to acknowledge the messages
and stop the retransmission.

3.6 Logged Best-Effort Broadcast

We now consider an alternative broadcast abstraction for the fail-recovery
model, which prevents multiple delivery of the same messages. In order to
achieve this goal, we define the semantics of message delivery according to
message logging, as we did for the logged perfect links abstraction in the
previous chapter. Roughly speaking, a process is said to deliver a message
when it logs the message, i.e., it stores it on stable storage. Hence, if it
has delivered a message m, a process that crashes and recovers will still be
able to retrieve m from stable storage and to execute any associated action
accordingly.

3.6.1 Specification

The abstraction we consider here is called logged broadcast to emphasize the
fact that the act of “delivering” corresponds to its “logging” in a local stable
storage. Instead of simply triggering an event to deliver a message, logged
broadcast relies on storing the message in a local log, which can later be read
by the layer above. The layer is notified about changes in the log through
specific events.

The specification is given in Module 3.5. The act of delivering the mes-
sage corresponds here to the act of logging the variable delivered with m in
that variable. Hence, validity, no duplication, and no creation properties are
redefined in term of log operations. Note also that we consider here the best-
effort case. As we discuss later, stronger abstractions (regular and uniform)
can then be designed and implemented on top of this one.

3.6.2 Fail-Recovery Algorithm: Logged Basic Broadcast

Algorithm 3.7, called “Logged Basic Broadcast”, implements logged best-
effort broadcast. It has many similarities, in its structure, with Algorithm 3.1
(“Basic Broadcast”). The main differences are the following:

1. The “Logged Basic Broadcast” algorithm makes use of stubborn com-
munication links between every pair of processes. Remember that these
ensure that a message that is sent by a process that does not crash to a
correct recipient is supposed to be delivered by its recipient an infinite
number of times.

84 3. Reliable Broadcast

Module 3.5 Interface and properties of logged best-effort broadcast

Module:

Name: LoggedBestEffortBroadcast (log-beb).

Events:

Request: 〈 log-bebBroadcast | m 〉: Used to broadcast message m to all
processes.

Indication: 〈 log-bebDeliver | delivered 〉: Used to notify the upper level
of potential updates to the delivered log.

Properties:

LBEB1: Best-effort validity: If a process pj is correct and another pro-
cess pi does not crash, then every message broadcast by pi is eventually
delivered by pj .

LBEB2: No duplication: No message is delivered more than once.

LBEB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

2. The “Logged Basic Broadcast” algorithm maintains a log of all delivered
messages. When a new message is received for the first time, it is ap-
pended to the log (delivered), and the upper layer is notified that the log
has changed. If the process crashes and later recovers, the upper layer is
also notified (as it may have missed a notification triggered just before
the crash).

Correctness. The no creation property is derived from that of the underly-
ing stubborn links, whereas no duplication is derived from the fact that the
delivery log is checked before delivering new messages. The validity property
follows from the fact that the sender sends the message to every other process
in the system.

Performance. The algorithm requires a single communication step for a pro-
cess to deliver a message, and exchanges at least N messages. Of course,
stubborn channels may retransmit the same message several times and, in
practice, an optimization mechanism is needed to acknowledge the messages
and stop the retransmission. Additionally, the algorithm requires a log oper-
ation for each delivered message.

3.7 Logged Uniform Reliable Broadcast

In a manner similar to the crash-no-recovery case, it is possible to define both
reliable and uniform variants of best-effort broadcast for the fail-recovery
setting.

3.7 Logged Uniform Reliable Broadcast 85

Algorithm 3.7 Logged Basic Broadcast

Implements:
LoggedBestEffortBroadcast (log-beb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;
store (delivered);

upon event 〈 Recovery 〉 do
retrieve (delivered);
trigger 〈 log-bebDeliver | delivered 〉;

upon event 〈 log-bebBroadcast | m 〉 do
forall pi ∈ Π do

trigger 〈 sp2pSend | pi, m 〉;

upon event 〈 sp2pDeliver | src, m 〉 do
if ((src, m) �∈ delivered) then

delivered := delivered ∪ {(src, m)};
store (delivered);
trigger 〈 log-bebDeliver | delivered 〉;

Module 3.6 Interface and properties of logged uniform reliable broadcast

Module:

Name: LoggedUniformReliableBroadcast (log-urb).

Events:

〈 log-urbBroadcast | m 〉, 〈 log-urbDeliver | delivered 〉 with the same
meaning and interface as in logged best-effort broadcast.

Properties:

LBEB1 (Validity), LBEB2 (No duplication), and LBEB3 (No creation),
same as in logged best-effort broadcast.

LURB1: Uniform Agreement: If a message m is delivered by some process,
then m is eventually delivered by every correct process.

3.7.1 Specification

Module 3.6 defines a logged variant of the uniform reliable broadcast abstrac-
tion for the fail-recovery model. In this variant, if a process (either correct or
not) delivers a message (i.e., logs the variable delivered with the message in
it), all correct processes should eventually deliver that message. Not surpris-
ingly, the interface is similar to that of logged best-effort broadcast.

86 3. Reliable Broadcast

3.7.2 Fail-Recovery Algorithm: Logged Majority-Ack URB

Algorithm 3.8, called “Logged Majority-Ack URB”, implements logged uni-
form broadcast assuming a majority of the correct processes. The act of
delivering (log-urbDeliver) a message m corresponds to logging the variable
delivered with m in that variable. Besides delivered, the algorithm uses two
other variables: pending and ackm. Variable pending represents a set that
gathers the messages that have been seen by a process but still need to be
log-urbDelivered. This variable is logged. The ackm set gathers, at each pro-
cess pi, the set of processes that pi knows have seen m. The ackm set is not
logged: it can be reconstructed upon recovery. Messages are only appended
to the delivered log when they have been retransmitted by a majority of the
processes. This, together with the assumption of a correct majority, ensures
that at least one correct process has logged the message, and this will ensure
the retransmission to all correct processes.

Correctness. Consider the agreement property and assume some process pi

delivers (log-urbDelivers) a message m and does not crash. To do so, a major-
ity of the processes must have retransmitted the message. As we assume a ma-
jority of the correct processes, at least one correct process must have logged
the message (in pending). This process will ensure the eventual transmission
(sp2pSend) of the message to all correct processes and all correct processes
will hence acknowledge the message. Hence, every correct will deliver (log-
urbDeliver) m. Consider the validity property and assume some process pi

broadcasts (log-urbBroadcasts) a message m and does not crash. Eventually,
the message will be seen by all correct processes. As a majority is correct,
a majority will retransmit the message: pi will eventually log-urbDeliver m.
The no duplication property is trivially ensured by the algorithm whereas the
no creation property is ensured by the underlying channels.

Performance. Let m be any message that is broadcast (log-urbBroadcast)
by some process pi. A process delivers the message (log-urbDeliver) m after
two communication steps and two causally related logging operations. (The
logging of pending can be done in parallel).

3.8 Randomized Broadcast

This section considers randomized broadcast algorithms. These algorithms
do not provide deterministic broadcast guarantees but, instead, only make
probabilistic claims about such guarantees.

Of course, this approach can only be applied to applications that do not
require full reliability. On the other hand, full reliability often induces a cost
that is inacceptable in large-scale systems and, as we will see, it is often
possible to build scalable randomized probabilistic algorithms while providing
good reliability guarantees.

3.8 Randomized Broadcast 87

Algorithm 3.8 Logged Majority-Ack Uniform Reliable Broadcast

Implements:
LoggedUniformReliableBroadcast (log-urb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
forall m do ackm := ∅;
pending := delivered := ∅;
store (pending, delivered);

upon event 〈 Recovery 〉 do
retrieve (pending, delivered);
trigger 〈 log-rbDeliver | delivered 〉;
forall (sm, m) ∈ pending do

forall pi ∈ Π do trigger 〈 sp2pSend | pi, [Data, sm, m] 〉;

upon event 〈 log-urbBroadcast | m 〉 do
pending := pending ∪ {(pi, m)};
store (pending);
ackm := ackm ∪ {self};
forall pi ∈ Π do trigger 〈 sp2pSend | pi, [Data, pi, m] 〉;

upon event 〈 sp2pDeliver | src, [Data, sm, m] 〉 do
if ((sm, m) �∈ pending) then

pending := pending ∪ {(sm, m)};
store (pending);
forall pi ∈ Π do trigger 〈 sp2pSend | pi, [Data, sm, m] 〉;

if (pi �∈ ackm) then
ackm := ackm ∪ {pi};
if (|ackm| > N/2) ∧ ((sm, m) �∈ delivered)then

delivered := delivered ∪ {(sm, m)};
store (delivered);
trigger 〈 log-urbDeliver | delivered 〉;

3.8.1 The Scalability of Reliable Broadcast

As we have seen throughout this chapter, in order to ensure the reliability
of broadcast in the presence of faulty processes (and/or links with omission
failures), one needs to collect some form of acknowledgment. However, given
limited bandwidth, memory, and processor resources, there will always be a
limit to the number of acknowledgments that each process is able to collect
and compute in due time. If the group of processes becomes very large (say,
millions or even thousands of members in the group), a process collecting
acknowledgments becomes overwhelmed by that task. This phenomenon is
known as the ack implosion problem (see Figure 3.4a).

88 3. Reliable Broadcast

(a) (b)

Fig. 3.4: Ack implosion and ack tree

There are several ways of mitigating the ack implosion problem. One way
is to use some form of hierarchical scheme to collect acknowledgments, for in-
stance, arranging the processes in a binary tree, as illustrated in Figure 3.4b.
Hierarchies can reduce the load of each process but increase the latency in
the task of collecting acknowledgments. Additionally, hierarchies need to be
reconfigured when faults occur (which may not be a trivial task). Further-
more, even with this sort of hierarchies, the obligation to receive, directly or
indirectly, an acknowledgment from every other process remains a fundamen-
tal scalability problem of reliable broadcast. In the next section we discuss
how randomized approaches can circumvent this limitation.

3.8.2 Epidemic Dissemination

Nature gives us several examples of how a randomized approach can imple-
ment a fast and efficient broadcast primitive. Consider how epidemics are
spread among a population. Initially, a single individual is infected; this in-
dividual in turn will infect some other individuals; after some period, the
whole population is infected. Rumor spreading, or gossiping, is based exactly
on the same sort of mechanism and has proved to be a very effective way to
disseminate information.

A number of broadcast algorithms have been designed based on this prin-
ciple and, not surprisingly, these are often called epidemic, rumor mongering,
or probabilistic broadcast algorithms. Before giving more details on these al-
gorithms, we first define the abstraction that they implement, which we call
probabilistic broadcast. To illustrate how algorithms can implement the ab-
straction, we assume a model where processes can only fail by crashing.

3.8.3 Specification

Probabilistic broadcast is characterized by the properties PB1-3 depicted in
Module 3.7. Note that only the validity property is probabilistic. The other
properties are not.

3.8 Randomized Broadcast 89

Module 3.7 Interface and properties of probabilistic broadcast

Module:

Name: ProbabilisticBroadcast (pb).

Events:

Request: 〈 pbBroadcast | m 〉: Used to broadcast message m to all pro-
cesses.

Indication: 〈 pbDeliver | src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

PB1: Probabilistic validity: There is a given probability such that for any
two correct processes pi and pj , every message broadcast by pi is eventually
delivered by pj with this probability.

PB2: No duplication: No message is delivered more than once.

PB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

As for previous communication abstractions we introduced in this chapter,
we assume that messages are implicitly addressed to all processes in the
system, i.e., the goal of the sender is to have its message delivered to all
processes of a given group constituting what we call the system.

The reader may find similarities between the specification of probabilistic
broadcast and the specification of best-effort broadcast presented in Sec-
tion 3.2. In some sense, both are probabilistic approaches. However, in best-
effort broadcast, the probability of delivery depends directly on the reliability
of the processes: it is in this sense hidden under the probability of process
failures. In probabilistic broadcast, it becomes explicit in the specification.

3.8.4 Randomized Algorithm: Eager Probabilistic Broadcast

Algorithm 3.9, called “Eager Probabilistic Broadcast”, implements proba-
bilistic broadcast. The sender selects k processes at random and sends them
the message. In turn, each of these processes selects another k processes at
random and forwards the message to those processes. Note that, in this al-
gorithm, some or all of these processes may be exactly the processes already
selected by the initial sender.

A step consisting of receiving a message and gossiping is called a round.
The algorithm performs a maximum number of rounds r for each message.

The reader should observe here that k, also called the fanout, is a funda-
mental parameter of the algorithm. Its choice directly impacts the probability
of reliable message delivery guaranteed by the algorithm. A higher value of k
will not only increase the probability of having the entire population infected
but will also decrease the number of rounds required to have the entire pop-

90 3. Reliable Broadcast

Algorithm 3.9 Eager Probabilistic Broadcast

Implements:
ProbabilisticBroadcast (pb).

Uses:
FairLossPointToPointLinks (flp2p).

upon event 〈 Init 〉 do
delivered := ∅;

function pick-targets (ntargets) returns set of processes is
targets := ∅;
while (| targets | < ntargets) do

candidate := random (Π);
if (candidate �∈ targets) ∧ (candidate �= self) then

targets := targets ∪ {candidate};
return targets;

procedure gossip (msg) is
forall t ∈ pick-targets (fanout) do trigger 〈 flp2pSend | t, msg 〉;

upon event 〈 pbBroadcast | m 〉 do
gossip ([Gossip, self, m, maxrounds−1]);

upon event 〈 flp2pDeliver | pi, [Gossip, sm, m, r] 〉 do
if (m �∈ delivered) then

delivered := delivered ∪ {m}
trigger 〈 pbDeliver | sm, m 〉;

if r > 0 then gossip ([Gossip, sm, m, r − 1]);

ulation infected. Note also that the algorithm induces a significant amount
of redundancy in the message exchanges: any given process may receive the
same message more than once. The execution of the algorithm is illustrated
in Figure 3.5 for a configuration with a fanout of 3.

The higher the fanout, the higher the load imposed on each process and
the amount of redundant information exchanged in the network. Therefore,
to select the appropriate k is of particular importance. The reader should also
note that there are runs of the algorithm where a transmitted message may
not be delivered to all correct processes. For instance, all the k processes that
receive the message directly from the sender may select exactly the same k
processes to forward the message to. In such a case, only these k processes
will receive the message. This translates into the fact that the probability of
reliable delivery is not 100%.

Correctness. The no creation and no duplication properties are immediate
from the underlying channels we assume and the use of variable delivery.
The probability of delivering a message to all correct processes depends on
the size of the fanout and on the maximum number of rounds (maxrounds).

3.8 Randomized Broadcast 91

(a) round 1 (b) round 2 (c) round 3

Fig. 3.5: Epidemic (gossip) dissemination (fanout= 3)

Performance. The number of rounds needed for a message to be delivered by
all correct processes also depends on the fanout. Roughly speaking, the higher
the fanout, the higher is the number of messages exchanged at every round,
and consequently the lower is the number of rounds needed for a message to
reach all correct processes.

3.8.5 Randomized Algorithm: Lazy Probabilistic Broadcast

The “Eager Probabilistic Broadcast” algorithm we just described uses a gos-
sip approach for the dissemination of messages. A major disadvantage of this
approach is that it consumes a non negligible amount of resources with redun-
dant transmissions. A way to overcome this limitation is to rely on a basic,
possibly unreliable, but efficient broadcast primitive, when such a primitive
is available. This primitive would be used to disseminate the messages first,
and then the gossip approach would just be used as a backup to recover from
message losses.

More precisely, we assume here the existence of a broadcast communica-
tion abstraction, defined by the primitives unBroadcast and unDeliver. We
do not make specific assumptions on these, except that they could be used
to exchange messages efficiently, without corrupting or adding messages to
the system, and with nonzero probability of message delivery. The broadcast
primitive could typically be implemented on top of fair-loss links. Of course,
such a primitive might not always be available in settings that include a very
large number of processes spread over the Internet.

Algorithm 3.10-3.11, called “Lazy Probabilistic Broadcast”, assumes that
each sender is transmitting a stream of numbered messages. Message omis-
sions are detected based on gaps in the sequence numbers of received mes-
sages. Each message is disseminated using the unreliable broadcast primitive.
For each message, some randomly selected receivers are chosen to store a copy

92 3. Reliable Broadcast

Algorithm 3.10 Lazy Probabilistic Broadcast (data dissemination)

Implements:
ProbabilisticBroadcast (pb).

Uses:
FairLossPointToPointLinks (flp2p);
UnreliableBroadcast (un).

upon event 〈 Init 〉 do
forall pi ∈ Π do delivered[pi] := 0;
lsn := 0; pending := stored := ∅;

procedure deliver-pending (s) is
while exists [Data, s, x, snx] ∈ pending such that

snx = delivered[s]+1 do
delivered[s] := delivered[s]+1;
pending := pending \ {[Data, s, x, snx]};
trigger 〈 pbDeliver | s, x 〉;

procedure gossip (msg) is
forall t ∈ pick-targets (fanout) do
trigger 〈 flp2pSend | t, msg 〉;

upon event 〈 pbBroadcast | m 〉 do
lsn := lsn+1; trigger 〈 unBroadcast | [Data, self, m, lsn] 〉;

upon event 〈 unDeliver | pi, [Data, sm, m, snm] 〉 do
if (random() > store-threshold) then

stored := stored ∪ { [Data, sm, m, snm] };
if (snm = delivered[sm]+1) then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver | sm, m 〉;

else if (snm > delivered[sm]+1) then
pending := pending ∪ { [Data, sm, m, snm] };
forall seqnb ∈ [delivered[sm] + 1, snm − 1] do

gossip ([Request, self, sm, seqnb, maxrounds−1]);
startTimer (TimeDelay, pi, snm);

of the message for future retransmission; they store the message for some
maximum amount of time. The purpose of this approach is to distribute,
among all processes, the load of storing messages for future retransmission.

Omissions can be detected using sequence numbers associated with mes-
sages. A process p detects that it has missed a message from a process q
when p receives a message from q with a larger timestamp than what p was
expecting from q. When a process detects an omission, it uses the gossip al-
gorithm to disseminate a retransmission request. If the request is received by
one of the processes that has stored a copy of the message, then this process
retransmits the message. Note that, in this case, the gossip algorithm does
not need to be configured to ensure that the retransmission request reaches

3.8 Randomized Broadcast 93

Algorithm 3.11 Lazy Probabilistic Broadcast (recovery)

upon event 〈 flp2pDeliver | pj , [Request, pi, sm, snm, r] 〉 do
if ([Data, sm, m, snm] ∈ stored) then

trigger 〈 flp2pSend | pi, [Data, sm, m, snm] 〉;
else if (r > 0) then gossip ([Request, pi, sm, snm, r − 1]);

upon event 〈 flp2pDeliver | pj , [Data, sm, m, snm] 〉 do
if (snm = delivered[sm]+1) then

delivered[sm] := delivered[sm]+1;
trigger 〈 pbDeliver | sm, m 〉;
deliver-pending (sm);

else
pending := pending ∪ { [Data, sm, m, snm] };

upon event 〈 Timeout | s, sn 〉
if sn = delivered[s]+1 then delivered[s] := delivered[s]+1;

all processes: it is enough that it reaches, with high probability, one of the
processes that has stored a copy of the missing message. With small proba-
bility, recovery will fail. In this case, after some time, the message is simply
marked as delivered, such that subsequent messages from the same sender
can be delivered.

Correctness. The no creation and no duplication properties follow from the
underlying channels and the use of timestamps. The probability of delivering
a message to all correct processes depends here on the fanout (as in the
“Eager Probabilistic Broadcast” algorithm) as well as on the reliability of
the underlying disseminatination primitive.

Performance. Clearly, and assuming an underlying dissemination primitive
that is efficient and reasonably reliable, the broadcasting of a message is much
more effective than in the “Eager Probabilistic Broadcast” algorithm.

It is expected that, in most cases, the retransmission request message is
much smaller that the original data message. Therefore, this algorithm is also
much more resource effective than the “Eager Probabilistic Broadcast.”

Practical algorithms based on this principle make a significant effort to
optimize the number of processes that store copies of each broadcast message.
Not surprisingly, the best results can be obtained if the physical network
topology is taken into account: for instance, an omission in a link connecting
a local area network (LAN) with the rest of the system affects all processes in
that LAN. Thus, it is desirable to have a copy of the message in each LAN (to
recover from local omissions) and a copy outside the LAN (to recover from
the omission in the link to the LAN). Similarly, the retransmission procedure,
instead of being completely random, may search first for a copy in the local
LAN and only afterward at more distant processes.

94 3. Reliable Broadcast

3.9 Causal Broadcast

So far, we have not considered any ordering guarantee among messages deliv-
ered by different processes. In particular, when we consider a reliable broad-
cast abstraction, messages can be delivered in any order and the reliability
guarantees are in a sense orthogonal to such an order.

In this section, we discuss the issue of ensuring message delivery accord-
ing to causal ordering. This is a generalization of FIFO (first-in first-out)
ordering, where messages from the same process should be delivered in the
order in which they were broadcast.

3.9.1 Overview

Consider the case of a distributed message board that manages two types
of information: proposals and comments on previous proposals. To make the
interface user-friendly, comments are depicted attached to the proposal they
are referring to.

In order to make it highly available, it is natural to implement the board
application by replicating all the information to all participants. This can be
achieved through the use of a reliable broadcast primitive to disseminate both
proposals and comments. With a reliable broadcast, the following sequence
would be possible: participant p1 broadcasts a message m1 containing a new
proposal; participant p2 delivers m1 and disseminates a comment in message
m2; due to message delays, another participant p3 delivers m2 before m1. In
this case, the application at p3 would be forced to keep m2 and wait for m1,
in order not to present the comment before the proposal being commented.
In fact, m2 is causally after m1 (m1 → m2), and a causal order primitive
would make sure that m1 would have been delivered before m2, relieving the
application programmer from performing such a task.

3.9.2 Specifications

As the name indicates, a causal order abstraction ensures that messages are
delivered respecting cause-effect relations. This is expressed by the happened-
before relation described earlier in this book (Section 2.4.1). This relation,
also called the causal order relation, when applied to the messages exchanged
among processes, is captured by broadcast and delivery events. In this case,
we say that a message m1 may potentially have caused another message m2

(or m1 happened before m2), denoted as m1 → m2, if any of the following
relations applies:

• m1 and m2 were broadcast by the same process p and m1 was broadcast
before m2 (Figure 3.6a).

• m1 was delivered by process p, m2 was broadcast by process p, and m2

was broadcast after the delivery of m1 (Figure 3.6b).

3.9 Causal Broadcast 95

m1 m2

p2

p3

p1

(a)

m1

p2

p3

p1

m2

(b)

m1

p2

p3

p1

m2

m′

(c)

Fig. 3.6: Causal order of messages

Module 3.8 Causal order property

Module:

Name: CausalOrder (co).

Events:

Request: 〈 coBroadcast | m 〉: Used to broadcast message m to Π .

Indication: 〈 coDeliver | src, m 〉: Used to deliver message m broadcast
by process src.

Properties:

CB: Causal delivery: No process pi delivers a message m2 unless pi has
already delivered every message m1 such that m1 → m2.

• there exists some message m′ such that m1 → m′ and m′ → m2 (Fig-
ure 3.6c).

Using the causal order relation, one can define a broadcast with the property
CB in Module 3.8. The property states that messages are delivered by the
broadcast abstraction according to the causal order relation. There must be
no “holes” in the causal past, i.e., when a message is delivered, all preceding
messages have already been delivered.

Clearly, a broadcast primitive that has only to ensure the causal delivery
property might not be very useful: the property might be ensured by having
no process ever deliver any message. However, the causal delivery property
can be combined with both reliable broadcast and uniform reliable broadcast
semantics. These combinations would have the interface and properties of
Module 3.9 and Module 3.10, respectively.

To simplify, we call the first causal order broadcast and the second uniform
causal order broadcast (we skip the term reliable). The reader might wonder
at this point whether it would make sense to also consider a causal best-effort
broadcast abstraction, combining the properties of best-effort broadcast with
the causal delivery property. As we show through an exercise at the end of
the chapter, this would inherently be also reliable.

96 3. Reliable Broadcast

Module 3.9 Properties of causal broadcast

Module:

Name: ReliableCausalOrder (rco).

Events:

〈 rcoBroadcast | m 〉 and 〈 rcoDeliver | src, m 〉: with the same meaning
and interface as the causal order interface.

Properties:

RB1–RB4 from reliable broadcast and CB from causal order broadcast.

Module 3.10 Properties of uniform causal broadcast

Module:

Name: UniformReliableCausalOrder (urco).

Events:

〈 urcoBroadcast | m 〉 and 〈 urcoDeliver | src, m 〉: with the same meaning
and interface as the causal order interface.

Properties:

URB1–URB4 from uniform reliable broadcast and CB from causal order
broadcast.

3.9.3 Fail-Silent Algorithm: No-Waiting Causal Broadcast

Algorithm 3.12, called “No-Waiting Causal Broadcast”, uses an underlying
reliable broadcast communication abstraction defined through rbBroadcast
and rbDeliver primitives. The same algorithm could be used to implement
a uniform causal broadcast abstraction, simply by replacing the underlying
reliable broadcast module by a uniform reliable broadcast module.

The algorithm is said to be no-waiting in the following sense: whenever a
process rbDelivers a message m, it rcoDelivers m without waiting for other
messages to be rbDelivered. Each message m carries a control field called
pastm. The pastm field of a message m includes all messages that causally
precede m. When a message m is rbDelivered, pastm is first inspected: mes-
sages in pastm that have not been rcoDelivered must be rcoDelivered before
m itself is also rcoDelivered. In order to record its own causal past, each
process p memorizes all the messages it has rcoBroadcast or rcoDelivered in
a local variable past. Note that past (and pastm) are ordered sets.

As we pointed out, an important feature of Algorithm 3.12 is that the
rcoDelivery of a message is never delayed in order to enforce causal order. This
is illustrated in Figure 3.7. Consider, for instance, process p4 that rbDelivers
message m2. Since m2 carries m1 in its past, m1 and m2 are rcoDelivered in
order. Finally, when m1 is rbDelivered from p1, m1 is discarded.

Correctness. All properties of reliable broadcast follow from the use of an
underlying reliable broadcast primitive and the no-waiting flavor of the algo-

3.9 Causal Broadcast 97

Algorithm 3.12 No-Waiting Causal Broadcast

Implements:
ReliableCausalOrder (rco).

Uses:
ReliableBroadcast (rb).

upon event 〈 Init 〉 do
delivered := ∅;
past := ∅

upon event 〈 rcoBroadcast | m 〉 do
trigger 〈 rbBroadcast | [Data, past, m] 〉;
past := past ∪ {(self,m)};

upon event 〈 rbDeliver | pi, [Data, pastm, m] 〉 do
if (m �∈ delivered) then

forall (sn, n) ∈ pastm do // in a deterministic order
if (n �∈ delivered) then

trigger 〈 rcoDeliver | sn, n 〉;
delivered := delivered ∪ {n}
past := past ∪ {(sn, n)};

trigger 〈 rcoDeliver | pi, m 〉;
delivered := delivered ∪ {m};
past := past ∪ {(pi, m)};

p1

p2

p3

p4

rcoBroadcast (m1)

[m1]

rcoBroadcast (m2)

rcoDeliver (m2)

rcoDeliver (m1)

Fig. 3.7: Sample execution of causal broadcast with complete past

rithm. The causal order property is enforced by having every message carry
its causal past and every process making sure that it rcoDelivers the causal
past of a message before rcoDelivering the message.

Performance. The algorithm does not add additional communication steps
or send extra messages with respect to the underlying reliable broadcast al-
gorithm. However, the size of the messages grows linearly with time. In par-
ticular, the past field may become extremely large in long running executions,
since it includes the complete causal past of the process.

98 3. Reliable Broadcast

In the next subsection, we present a simple scheme to reduce the size of
past. We will later discuss an algorithm (“Waiting Causal Broadcast”) that
completely eliminates the need for exchanging past messages.

3.9.4 Fail-Stop Extension: Garbage Collecting the Causal Past

We now present a very simple optimization of the “No-Waiting Causal Broad-
cast” algorithm, depicted in Algorithm 3.13, to delete messages from the past
variable. Algorithm 3.13 assumes a fail-stop model: it uses a perfect failure
detector. The algorithm is a kind of distributed garbage collection scheme
and it works as follows: when a process rbDelivers a message m, the process
rbBroadcasts an Ack message to all other processes; when an Ack for mes-
sage m has been rbDelivered from all correct processes, m is purged from
past.

This distributed garbage collection scheme does not impact the correct-
ness of our “No-Waiting Causal Broadcast” algorithm provided the strong
accuracy property of the failure detector is indeed ensured. We purge a mes-
sage only if this message has been rbDelivered by all correct processes.

If the completeness property of the failure detector is violated, then the
only risk is to keep messages that could have been purged: correctness is
not affected. In terms of performance, acknowledgment messages are indeed
added (N2 acknowledgment messages for each data message), but these can
be grouped and performed in batch mode: they do not need to slow down
the main path of rcoDelivering a message.

Even with this optimization, the no-waiting approach might be consid-
ered too expensive in terms of bandwidth. We present, in the following, an
approach that tackles the problem at the expense of waiting.

3.9.5 Fail-Silent Algorithm: Waiting Causal Broadcast

Like Algorithm 3.12 (“No-Waiting Causal Broadcast”), Algorithm 3.14,
called “Waiting Causal Broadcast”, relies on an underlying reliable broad-
cast communication abstraction defined through rbBroadcast and rbDeliver
primitives.

Instead of keeping a record of all past messages, however, the idea is to
represent the past with a vector of sequence numbers. More precisely, past
is now represented with an array of integers called a vector clock. The vec-
tor basically captures the causal precedence between messages. An auxiliary
function rank, converts the process indentifier in an integer that can be used
as an index in the vector (i.e., rank(p1)= 1, ..., rank(pn)= n).

Every process p maintains a vector clock that represents the number of
messages that p has rcoDelivered from every other process, and the number
of messages it has itself rcoBroadcast. This vector is then attached to every
message m that p rcoBroadcasts. A process q that rbDelivers m compares

3.9 Causal Broadcast 99

Algorithm 3.13 Garbage Collection of Past

Implements:
ReliableCausalOrder (rco).

Extends:
No-waiting Causal Broadcast (Algorithm 3.12).

Uses:
ReliableBroadcast (rb);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
delivered := past := ∅;
correct := Π ;
forall m do ackm := ∅;

upon event 〈 crash | pi 〉 do
correct := correct \{pi};

upon exists m ∈ delivered such that self �∈ ackm do
ackm := ackm ∪ {self};
trigger 〈 rbBroadcast | [Ack, m] 〉;

upon event 〈 rbDeliver | pi, [Ack, m] 〉 do
ackm := ackm ∪ {pi};
if (correct ⊆ ackm) then past := past\{(sm, m)};

this vector with its own vector to determine how many messages are missing
(if any), and from which processes. Process q needs to rcoDeliver all these
missing messages before it can rcoDeliver m.

As its name indicates (“Waiting Causal Broadcast”), and as we explain
below, the algorithm forces (sometimes) processes to wait before rcoDeliver-
ing a message they had rbDelivered. This is the price to pay for limiting the
size of the messages. Indeed, it is possible that a message may be prevented
from being rcoDelivered immediately when it is rbDelivered, because some
of the preceeding messages have not been rbDelivered yet. It is on the other
hand possible that the rbDelivery of a single message triggers the rcoDeliv-
ery of several messages that were waiting to be rcoDelivered. For instance,
in Figure 3.8, message m2 is rbDelivered to p4 before message m1, but its
rcoDelivery is delayed until m1 is rbDelivered and rcoDelivered.

Correctness. The no duplication and no creation properties follow from those
of the underlying reliable broadcast abstraction.

Consider a message m that is rcoDelivered by some correct process p. Due
to the agreement property of the underlying reliable broadcast, every correct
process eventually rbDelivers m. According to the algorithm, every correct
process also eventually rbDelivers every message that causally precedes m.
Hence, every correct process eventually rcoDelivers m. Consider now validity

100 3. Reliable Broadcast

Algorithm 3.14 Waiting Causal Broadcast

Implements:
ReliableCausalOrder(rco).

Uses:
ReliableBroadcast (rb).

upon event 〈 init 〉 do
forall pi ∈ Π do VC[rank(pi)] := 0;
pending := ∅;

procedure deliver-pending is
while exists (sx, [Data, VCx, x]) ∈ pending such that

∀pj
:VC[rank(pj)] ≥VCx[rank(pj)] do

pending := pending \ (sx, [Data, VCx, x]);
trigger 〈 rcoDeliver | sx, x 〉;
VC[rank(sx)] := VC[rank(sx)]+1;

upon event 〈 rcoBroadcast | m 〉 do
trigger 〈 rcoDeliver | self, m 〉;
trigger 〈 rbBroadcast | [Data, VC, m] 〉;
VC[rank(self)] := VC[rank(self)] + 1;

upon event 〈 rbDeliver | pi, [Data, VCm, m] 〉 do
if pi �= self then

pending := pending ∪ (pi, [Data, VCm, m]);
deliver-pending;

p1

p2

p3

p4

rcoBroadcast (m1)

rcoDeliver (m1)
rcoDeliver (m2)

[1, 0, 0, 0]

[1, 1, 0, 0]

rcoBroadcast (m2)

Fig. 3.8: Sample execution of waiting-causal broadcast

and a message m that is rcoBroadcast by some correct process p. According
to the algorithm, p directly rcoDelivers m.

Consider now the causal order property. Due to the use of the vector
clocks, if a message m1 precedes m2, no process rcoDelivers m2 before rcoDe-
livering m1.

3.10 Hands-On 101

Performance. The algorithm does not add any additional communication
steps or messages to the underlying reliable broadcast algorithm. The size of
the message header is linear with regard to the number of processes in the
system.

Variant. We discuss through an exercise at the end of this chapter a uniform
variant of the “Waiting Causal Broadcast” algorithm.

3.10 Hands-On

We now describe the implementation, in Appia, of several of the protocols
introduced in this chapter.

3.10.1 Basic Broadcast

The communication stack used to illustrate the protocol is the following:

Application
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The implementation of this algorithm closely follows Algorithm 3.1 (“Ba-
sic Broadcast”). As shown in Listing 3.1, this protocol only handles three
classes of events, namely, the ProcessInitEvent, used to initialize the set of
processes that participate in the broadcast (this event is triggered by the
application after reading the configuration file), the ChannelInit event, auto-
matically triggered by the runtime when a new channel is created, and the
SendableEvent. This last event is associated with transmission requests (if the
event flows in the stack downward) or the reception of events from the layer
below (if the event flows upward). Note that the code in these listing has
been simplified. In particular, all exception handling code was deleted from
the listings for clarity (but is included in the code distributed with the book).

The only method that requires some coding is the bebBroadcast() method,
which is in charge of sending a series of point-to-point messages to all mem-
bers of the group. This is performed by executing the following instructions
for each member of the group: i) the event being sent is “cloned” (this effec-
tively copies the data to be sent to a new event); ii) the source and destination
address of the point-to-point message are set; iii) the event is forwarded to the
layer below. There is a single exception to this procedure: if the destination
process is the sender itself, the event is immediately delivered to the upper
layer. The method to process messages received from the the layer below is
very simple: it just forwards the message up.

102 3. Reliable Broadcast

Listing 3.1. Basic Broadcast implementation

package appia.protocols.tutorialDA.basicBroadcast;

public class BasicBroadcastSession extends Session {

private ProcessSet processes;

public BasicBroadcastSession(Layer layer) {
super(layer);

}

public void handle(Event event){
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit)event);
else if (event instanceof ProcessInitEvent)

handleProcessInitEvent((ProcessInitEvent) event);
else if (event instanceof SendableEvent){

if (event.getDir()==Direction.DOWN)
// UPON event from the above protocol (or application)
bebBroadcast((SendableEvent) event);

else

// UPON event from the bottom protocol (or perfect point2point links)
pp2pDeliver((SendableEvent) event);

}
}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();

}

private void handleChannelInit(ChannelInit init) {
init .go();

}

private void bebBroadcast(SendableEvent event) {
SampleProcess[] processArray = this.processes.getAllProcesses();
SendableEvent sendingEvent = null;
for(int i=0 ; i<processArray.length ; i++){

// source and destination for data message
sendingEvent = (SendableEvent) event.cloneEvent();
sendingEvent.source = processes.getSelfProcess().getInetWithPort();
sendingEvent.dest = processArray[i].getInetWithPort();
// set the event fields
sendingEvent.setSource(this); // the session that created the event
if (i == processes.getSelfRank())

sendingEvent.setDir(Direction.UP);
sendingEvent.init ();
sendingEvent.go();

}
}

private void pp2pDeliver(SendableEvent event) {
event.go();

}
}

Try It. The previous implementation may be experimented with using a
simple test application, called SampleAppl. An optional parameter in the com-
mand line allows the user to select which protocol stack the application will
use. The general format of the command line is the following:

3.10 Hands-On 103

java demo/tutorialDA/SampleAppl -f <cf> -n <rank> -qos <prot>

The cf parameter is the name of a text file with the information about the
set of processes, namely, the total number N of processes in the system and,
for each of these processes, its “rank” and “endpoint.” The rank is a unique
logical identifier of each process (an integer from 0 to N −1). The “endpoint”
is just the host name or IP address and the port number of the process. This
information is used by low-level protocols (such as TCP or UDP) to estab-
lish the links among the processes. The configuration file has the following
format:

<number_of_processes>

<rank> <host_name> <port>

...

<rank> <host_name> <port>

For example, the following configuration file could be used to define a
group of three processes, all running on the local machine:

3

0 localhost 25000

1 localhost 25100

2 localhost 25200

The rank parameter identifies the rank of the process being launched
(and, implicitly, the address to be used by the process, taken from the con-
figuration file).

As noted above, prot parameter specifies which abstraction is used by
the application. There are several possible values. To test our basic broad-
cast implementation, use the value “beb.” After all processes are launched,
a message can be sent from one process to the other processes by typing a
bcast <string> in the command line and pressing the Enter key.

3.10.2 Lazy Reliable Broadcast

The communication stack used to illustrate the protocol is the following:

Application
Reliable Broadcast

(implemented by Lazy RB)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

104 3. Reliable Broadcast

The implementation of this algorithm, shown in Listing 3.2, closely fol-
lows Algorithm 3.2 (“Lazy Reliable Broadcast”). The protocol accepts four
events, namely, the ProcessInitEvent, used to initialize the set of processes that
participate in the broadcast (this event is triggered by the application after
reading the configuration file), the ChannelInit event, automatically triggered
by the runtime when a new channel is created, the Crash event, triggered by
the PFD when a node crashes, and the SendableEvent. This last event is associ-
ated with transmission requests (if the event flows in the stack downward) or
the reception of events from the layer below (if the event flows upward). Note
that the code in these listings has been simplified. In particular, all exception
handling code was deleted from the listings for clarity (but is included in the
code distributed with the book).

In order to detect duplicates, each message needs to be uniquely identi-
fied. In this implementation, the protocol uses the rank of the sender of the
message and a sequence number. This information needs to be pushed into
the message header when a message is sent, and then popped again when the
message is received. Note that during the retransmission phase, it is possible
for the same message, with the same identifier, to be broadcast by different
processes.

In the protocol, broadcasting a message consists of pushing the message
identifier and forwarding the request to the Best-Effort layer. Receiving the
message consists of popping the message identifier, checking for duplicates,
and logging and delivering the message when it is received for the first time.
Upon a crash notification, all messages from the crashed node are broad-
cast again. Note that when a node receives a message for the first time, if
the sender is already detected to have crashed, the message is immediately
retransmitted.

Listing 3.2. Lazy Reliable Broadcast implementation

package appia.protocols.tutorialDA.lazyRB;

public class LazyRBSession extends Session {
private ProcessSet processes;
private int seqNumber;
private LinkedList[] from;
private LinkedList delivered;

public LazyRBSession(Layer layer) {
super(layer);
seqNumber = 0;

}

public void handle(Event event){
// (...)

}

private void handleChannelInit(ChannelInit init) {
init .go();
delivered = new LinkedList();

}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();

3.10 Hands-On 105

event.go();
from = new LinkedList[processes.getSize()];
for (int i=0; i<from.length; i++)

from[i] = new LinkedList();
}

private void rbBroadcast(SendableEvent event) {
SampleProcess self = processes.getSelfProcess ();
MessageID msgID = new MessageID(self.getProcessNumber(),seqNumber);
seqNumber++;
((ExtendedMessage)event.getMessage()).pushObject(msgID);
bebBroadcast(event);

}

private void bebDeliver(SendableEvent event) {
MessageID msgID = (MessageID) ((ExtendedMessage)event.getMessage()).peekObject();
if (! delivered .contains(msgID)){

delivered.add(msgID);
SendableEvent cloned = (SendableEvent) event.cloneEvent();
((ExtendedMessage)event.getMessage()).popObject();
event.go();
SampleProcess pi = processes.getProcess((InetWithPort) event.source);
int piNumber = pi.getProcessNumber();
from[piNumber].add(event);
if (! pi . isCorrect ()){

SendableEvent retransmit = (SendableEvent) cloned.cloneEvent();
bebBroadcast(retransmit);

}
}

}

private void bebBroadcast(SendableEvent event) {
event.setDir(Direction.DOWN);
event.setSource(this);
event. init ();
event.go();

}

private void handleCrash(Crash crash) {
int pi = crash.getCrashedProcess();
System.out.println(”Process ”+pi+” failed.”);
processes.getProcess(pi).setCorrect(false);
SendableEvent event = null;
ListIterator it = from[pi]. listIterator ();
while(it.hasNext()){

event = (SendableEvent) it.next();
bebBroadcast(event);

}
from[pi]. clear ();
}

}

Try It. To test the implementation of the “Lazy Reliable Broadcast” pro-
tocol, we will use the same test application that we have used for the basic
broadcast. Please refer to the corresponding “try it” section for details.

The prot parameter should be used in this case with value “rb.” Note
that the “Lazy Reliable Broadcast” algorithm uses the perfect failure detec-
tor module. As described in the previous chapter, this module needs to be
activated. For this purpose, the test application also accepts the startpfd

106 3. Reliable Broadcast

command; do not forget to initiate the PFD for every process by issuing the
startpfd request on the command line before testing the protocol.

Hand-On Exercise 3.1 This implementation of the Reliable Broadcast al-
gorithm has a delivered set that is never garbage collected. Modify the imple-
mentation to remove messages that no longer need to be maintained in the
delivered set.

3.10.3 All-Ack Uniform Reliable Broadcast

The communication stack used to illustrate the protocol is the following:

Application
Uniform Reliable Broadcast

(implemented by All-Ack Uniform Reliable Broadcast)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The implementation of this protocol is shown in Listing 3.3. Note that
the code in these listings has been simplified. In particular, all exception
handling code was deleted from the listings for clarity (but is included in the
code distributed with the book).

The protocol uses two variables, received and delivered to register which
messages have already been received and delivered, respectively. These vari-
ables only store message identifiers. When a message is received for the first
time, it is forwarded as specified in the algorithm. To keep track on who
has already acknowledged (forwarded) a given message, a hash table is used.
There is an entry in the hash table for each message. This entry keeps the
data message itself (for future delivery) and a record of who has forwarded
the message.

When a message has been forwarded by every correct process, it can be
delivered. This is checked every time a new event is handled (as both the
reception of messages and the crash of processes may trigger the delivery of
pending messages).

Listing 3.3. All-Ack Uniform Reliable Broadcast implementation

package appia.protocols.tutorialDA.allAckURB;

public class AllAckURBSession extends Session {
private ProcessSet processes;
private int seqNumber;
private LinkedList received, delivered ;
private Hashtable ack;

3.10 Hands-On 107

public AllAckURBSession(Layer layer) {
super(layer);

}

public void handle(Event event) {
// (...)
urbTryDeliver();

}

private void urbTryDeliver() {
Iterator it = ack.values (). iterator ();
MessageEntry entry=null;
while(it.hasNext()){

entry = (MessageEntry) it.next();
if (canDeliver(entry)){

delivered .add(entry.messageID);
urbDeliver(entry.event, entry.messageID.process);

}
}

}

private boolean canDeliver(MessageEntry entry) {
int procSize = processes.getSize ();
for(int i=0; i<procSize; i++)

if (processes.getProcess(i). isCorrect() && (! entry.acks[i]))
return false;

return ((! delivered.contains(entry.messageID)) && received.contains(entry.messageID));
}

private void handleChannelInit(ChannelInit init) {
init .go();
received = new LinkedList();
delivered = new LinkedList();
ack = new Hashtable();

}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();

}

private void urbBroadcast(SendableEvent event) {
SampleProcess self = processes.getSelfProcess ();
MessageID msgID = new MessageID(self.getProcessNumber(),seqNumber);
seqNumber++;
received.add(msgID);
((ExtendedMessage) event.getMessage()).pushObject(msgID);
event.go ();

}

private void bebDeliver(SendableEvent event) {
SendableEvent clone = (SendableEvent) event.cloneEvent();
MessageID msgID = (MessageID) ((ExtendedMessage) clone.getMessage()).popObject();
addAck(clone,msgID);
if (! received.contains(msgID)){

received.add(msgID);
bebBroadcast(event);

}
}

private void bebBroadcast(SendableEvent event) {
event.setDir(Direction.DOWN);
event.setSource(this);
event. init ();
event.go();

108 3. Reliable Broadcast

}

private void urbDeliver(SendableEvent event, int sender) {
event.setDir(Direction.UP);
event.setSource(this);
event.source = processes.getProcess(sender).getInetWithPort();
event. init ();
event.go();

}

private void handleCrash(Crash crash) {
int crashedProcess = crash.getCrashedProcess();
System.out.println(”Process ”+crashedProcess+” failed.”);
processes.getProcess(crashedProcess).setCorrect(false);

}

private void addAck(SendableEvent event, MessageID msgID){
int pi = processes.getProcess((InetWithPort)event.source).getProcessNumber();
MessageEntry entry = (MessageEntry) ack.get(msgID);
if (entry == null){

entry = new MessageEntry(event, msgID, processes.getSize());
ack.put(msgID,entry);

}
entry.acks[pi] = true;

}
}

Try It. To test the implementation of the “All-Ack Uniform Reliable Broad-
cast” protocol, we will use the same test application that we have used for the
basic broadcast. Please refer to the corresponding “try it” section for details.

The prot parameter that should be used in this case is “urb.” Note that
the All-Ack Uniform Reliable Broadcast protocol uses the perfect failure de-
tector module. As described in the previous chapter, this module needs to be
activated. For this purpose, the test application also accepts the startpfd

command; do not forget to initiate the PFD at every processes by issuing the
startpfd request on the command line before testing the protocol.

Hand-On Exercise 3.2 Modify the implementation to keep track just of the
last message sent from each process in the received and delivered variables.

Hand-On Exercise 3.3 Change the protocol to exchange acknowledgments
when the sender is correct, and only retransmit the payload of a message when
the sender is detected to have crashed (just like in the Lazy Reliable Protocol).

3.10.4 Majority-Ack URB

The communication stack used to illustrate the protocol is the following (note
that a Perfect Failure Detector is no longer required):

3.10 Hands-On 109

Application
Uniform Reliable Broadcast

(implemented by Majority-Ack URB)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The protocol works in the same way as the protocol presented in the
prevous section, but without being aware of crashed processes. Besides that,
the only difference from the previous implementation is the canDeliver()

method, which is shown in Listing 3.4.

Listing 3.4. Indulgent Uniform Reliable Broadcast implementation

package appia.protocols.tutorialDA.majorityAckURB;

public class MajorityAckURBSession extends Session {

private boolean canDeliver(MessageEntry entry) {
int N = processes.getSize (), numAcks = 0;
for(int i=0; i<N; i++)

if (entry.acks[i])
numAcks++;

return (numAcks > (N/2)) && (! delivered.contains(entry.messageID));
}

// Except for the method above, and for the handling of the crash event, same
// as in the previous protocol

}

Try It. To test the implementation of the Majority-Ack uniform reliable
broadcast protocol, we will use the same test application that we have used
for the basic broadcast. Please refer to the corresponding “try it” section for
details. The prot parameter that should be used in this case is “iurb.”

Hand-On Exercise 3.4 Note that if a process does not acknowledge a mes-
sage, copies of that message may have to be stored for a long period (in fact,
if a process crashes, copies need to be stored forever). Try to devise a scheme
to ensure that no more than N/2 + 1 copies of each message are preserved
in the system (that is, not all members should be required to keep a copy of
every message).

3.10.5 Probabilistic Reliable Broadcast

This protocol is based on probabilities and is used to broadcast messages in
large groups. Instead of creating Perfect Point-to-Point Links, it use Unre-
liable Point-to-Point Links (UP2PL) to send messages just for a subset of
the group. The communication stack used to illustrate the protocol is the
following:

110 3. Reliable Broadcast

Application
Probabilistic Broadcast

(implemented by Eager PB)
Unreliable Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The protocol has two configurable parameters: i) fanout is the number of
processes for which the message will be gossiped about; ii) maxrounds, is the
maximum number of rounds that the message will be retransmitted.

The implementation of this protocol is shown on Listing 3.5. The gossip()

method invokes the pickTargets() method to choose the processes to which
the message is going to be sent and sends the message to those targets. The
pickTargets() method chooses targets randomly from the set of processes. Each
message carries its identification (as previous reliable broadcast protocols)
and the remaining number of rounds (when the message is gossiped again,
the number of rounds is decremented).

Listing 3.5. Probabilistic Broadcast implementation

package appia.protocols.tutorialDA.eagerPB;

public class EagerPBSession extends Session {

private LinkedList delivered;
private ProcessSet processes;
private int fanout, maxRounds, seqNumber;

public EagerPBSession(Layer layer) {
super(layer);
EagerPBLayer pbLayer = (EagerPBLayer) layer;
fanout = pbLayer.getFanout();
maxRounds = pbLayer.getMaxRounds();
seqNumber = 0;

}

public void handle(Event event){
// (...)

}

private void handleChannelInit(ChannelInit init) {
init .go();
delivered = new LinkedList();

}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
fanout = Math.min (fanout, processes.getSize ());
event.go();

}

private void pbBroadcast(SendableEvent event) {
MessageID msgID = new MessageID(processes.getSelfRank(),seqNumber);
seqNumber++;
gossip(event, msgID, maxRounds−1);

}

private void up2pDeliver(SendableEvent event) {
SampleProcess pi = processes.getProcess((InetWithPort)event.source);
int round = ((ExtendedMessage) event.getMessage()).popInt();
MessageID msgID = (MessageID) ((ExtendedMessage) event.getMessage()).popObject();

3.10 Hands-On 111

if (! delivered .contains(msgID)){
delivered .add(msgID);
SendableEvent clone = null;
clone = (SendableEvent) event.cloneEvent();
pbDeliver(clone,msgID);

}
if (round > 0)

gossip(event,msgID,round−1);
}

private void gossip(SendableEvent event, MessageID msgID, int round){
int [] targets = pickTargets();
for(int i=0; i<fanout; i++){

SendableEvent clone = (SendableEvent) event.cloneEvent();
((ExtendedMessage) clone.getMessage()).pushObject(msgID);
((ExtendedMessage) clone.getMessage()).pushInt(round);
up2pSend(clone,targets[i]);

}
}

private int [] pickTargets() {
Random random = new Random(System.currentTimeMillis());
LinkedList targets = new LinkedList();
Integer candidate = null;
while(targets.size() < fanout){

candidate = new Integer(random.nextInt(processes.getSize()));
if ((! targets .contains(candidate)) &&

(candidate.intValue() != processes.getSelfRank()))
targets .add(candidate);

}
int [] targetArray = new int[fanout];
ListIterator it = targets. listIterator ();
for(int i=0; (i<targetArray.length) && it.hasNext(); i++)

targetArray[i] = ((Integer) it .next()). intValue();
return targetArray;

}

private void up2pSend(SendableEvent event, int dest) {
event.setDir(Direction.DOWN);
event.setSource(this);
event.dest = processes.getProcess(dest).getInetWithPort();
event. init ();
event.go();

}

private void pbDeliver(SendableEvent event, MessageID msgID) {
event.setDir(Direction.UP);
event.setSource(this);
event.source = processes.getProcess(msgID.process).getInetWithPort();
event. init ();
event.go();

}
}

Try It. To test the implementation of the probabilistic reliable broadcast
protocol, we will use the same test application that we have used for the
basic broadcast. Please refer to the corresponding “try it” section for de-
tails. The prot parameter that should be used in this case is “pb <fanout>
<maxrounds>”, where the parameters are used to specify the fanout and the
maximum number of message rounds.

Hands-On Exercises.

112 3. Reliable Broadcast

Hand-On Exercise 3.5 The up2pDeliver() method performs two different
functions: i) it delivers the message to the application (if it has not been
delivered yet) and ii) it gossips about the message to other processes. Change
the code such that a node gossips just when it receives a message for the first
time. Discuss the impact of the changes.

Hand-On Exercise 3.6 Change the code to limit i) the number of messages
each node can store, and ii) the maximum throughput (messages per unit of
time) of each node.

3.10.6 No-Waiting Causal Broadcast

The communication stack used to implement the protocol is the following:

Application
Reliable Causal Order

(implemented by No-Waiting CB)
Delay

Reliable Broadcast
(implemented by Lazy RB)

Perfect Failure Detector
(implemented by TcpBasedPFD)

Best-Effort Broadcast
(implemented by Basic Broadcast)

Perfect Point-to-Point Links
(implemented by TcpBasedPerfectP2P)

The role of each of the layers is explained below.

SampleAppl: This layer implements the test application mentioned previ-
ously.

NoWaitingCO: This layer implements the causal order protocol. Each mes-
sage, in the protocol, is uniquely identified by its source and a sequence
number, as each process in the group has its own sequence number. The
events that walk through the stack are not serializable, so we have cho-
sen the relevant information of those events to send, as the past list. A
message coming from the protocol is represented in Figure 3.9.

Delay: Test protocol used to delay the messages of one process/source when
delivering them to one process/destination. This is used to check that
messages are really delivered in the right order, even when delays are
present. In short, this layer simulates network delays. Note that this layer
does not belong to the protocol stack; it was developed just for testing.

LazyRB: Protocol that implements the reliable broadcast algorithm. The
remaining layers are required by this protocol (see Chapter 3).

The protocol implementation is depicted in Listing 3.6.

3.10 Hands-On 113

Source Sequence MessageEvent
type (ip.port) number size

Message

Sequence
number

Size of
past list

PayloadPast List

Fig. 3.9: Format of messages exchanged by CONoWaiting protocol

Listing 3.6. No-Waiting Reliable Causal Order Broadcast implementation

package appia.protocols.tutorialDA.noWaitingCO;

public class NoWaitingCOSession extends Session {
Channel channel;
ProcessSet processes = null;
int seqNumber=0;
LinkedList delivered ; // Set of delivered messages.
LinkedList myPast; // Set of messages processed by this element.

public NoWaitingCOSession(Layer l) {
super(l);

}

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)e);
else if (e instanceof SendableEvent){

if (e.getDir()==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
}else{

e.go();
}

}

public void handleChannelInit (ChannelInit e){
e.go();
this.channel = e.getChannel();
delivered=new LinkedList();
myPast=new LinkedList();

}

public void handleProcessInit(ProcessInitEvent e) {
processes = e.getProcessSet();
e.go();

}

public void handleSendableEventDOWN (SendableEvent e){
//cloning the event to be sent in oder to keep it in the mypast list ...
SendableEvent e aux=(SendableEvent)e.cloneEvent();
ExtendedMessage om=(ExtendedMessage)e.getMessage();

//inserting myPast list in the msg:
for(int k=myPast.size();k>0;k−−){

ExtendedMessage om k =

114 3. Reliable Broadcast

(ExtendedMessage)((ListElement)myPast.get(k−1)).getSE().getMessage();
om.push(om k.toByteArray());
om.pushInt(om k.toByteArray().length);
om.pushInt(((ListElement)myPast.get(k−1)).getSeq());
InetWithPort.push((InetWithPort)((ListElement)myPast.get(k−1)).getSE().source,om);
om.pushString(((ListElement)myPast.get(k−1)).getSE().getClass().getName());

}
om.pushInt(myPast.size());
om.pushInt(seqNumber);

e.go();

//add this message to the myPast list:
e aux.source = processes.getSelfProcess (). getInetWithPort();
ListElement le=new ListElement(e aux,seqNumber);
myPast.add(le);

//increments the global seq number
seqNumber++;

}

public void handleSendableEventUP (SendableEvent e){
ExtendedMessage om=(ExtendedMessage)e.getMessage();
int seq=om.popInt();

//checks to see if this msg has been already delivered...
if (! isDelivered((InetWithPort)e.source,seq)){

//size of the past list of this msg
int pastSize=om.popInt();
for(int k=0;k<pastSize;k++){

String className=om.popString();
InetWithPort msgSource=InetWithPort.pop(om);
int msgSeq=om.popInt();
int msgSize=om.popInt();
byte[] msg=(byte[])om.pop();

// if this msg hasn’t been already delivered,
// we must deliver it prior to the one that just arrived!
if (! isDelivered(msgSource,msgSeq)){

//composing and sending the msg!
SendableEvent se=(SendableEvent) Class.forName(className).newInstance();
se .setChannel(channel);
se .setDir(Direction.UP);
se .setSource(this);
ExtendedMessage aux om = new ExtendedMessage();
aux om.setByteArray(msg,0,msgSize);
se .setMessage(aux om);
se .source=msgSource;

se . init ();
se .go();

//this msg has been delivered!
ListElement le=new ListElement(se,msgSeq);
delivered .add(le);
myPast.add(le);

}
}

//cloning the event just received to keep it in the mypast list
SendableEvent e aux=(SendableEvent)e.cloneEvent();

e.setMessage(om);
e.go();

3.10 Hands-On 115

ListElement le=new ListElement(e aux,seq);
delivered.add(le);

if (!e aux.source.equals(processes.getSelfProcess (). getInetWithPort()))
myPast.add(le);

}
}

boolean isDelivered(InetWithPort source,int seq){
for(int k=0;k<delivered.size();k++){

InetWithPort iwp aux =
(InetWithPort) ((ListElement)delivered.get(k)).getSE().source;

int seq aux=((ListElement)delivered.get(k)).getSeq();
if (iwp aux.equals(source) && seq aux==seq)

return true;
}
return false;

}
}

class ListElement{
SendableEvent se;
int seq;

public ListElement(SendableEvent se, int seq){
this.se=se;
this.seq=seq;

}

SendableEvent getSE(){
return se;

}

int getSeq(){
return seq;

}
}

Try It. To test the implementation of the no-waiting reliable causal order
broadcast, we will use the same test application that we have used for the
basic broadcast. Please refer to the corresponding “try it” section for details.
The prot parameter that should be used in this case is “conow.” Note that
this protocol uses the perfect failure detector module. As described in the
previous chapter, this module need to be activated. For this purpose, the test
application also accepts the startpfd command; do not forget to initiate the
PFD at every processes by issuing the startpfd request on the command
line before testing the protocol.

To run some simple tests, execute the following steps:

1. Open three shells/command prompts.
2. In each shell go to the directory where you have placed the supplied code.
3. In each shell launch the test application, SampleAppl, giving a different

n value (0, 1 or 2) and specifying the qos as conow.
• In shell 0 execute:

java demo/tutorialDA/SampleAppl \

116 3. Reliable Broadcast

-f demo/tutorialDA/procs \

-n 0 \

-qos conow

• In shell 1 execute:

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

-qos conow

• In shell 2 execute:

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 2 \

-qos conow

Note: If the error NoClassDefError has appeared, confirm that you are
at the root of the supplied code.

Now that processes are launched and running, you may try the following two
distinct executions:

1. Execution I:
a) In shell 0, send a message M1 (type bcast M1 and press enter).

• Note that all processes received M1.
b) In shell 1, send a message M2.

• Note that all processes received M2.
c) Confirm that all processes have received M1 and then M2, and note

the continuous growth of the size of the messages sent.
2. Execution II: For this execution it is necessary to first modify file Sam-

pleAppl.java in package demo.tutorialDA. The sixth line of method get-

COnoWChannel should be uncommented in order to insert a test layer
that allows the injection of delays in messages sent between process 0
and process 2. After modifying the file, it is necessary to compile it.

a) In shell 0, send a message M1.
• Note that process 2 did not receive M1.

b) In shell 1, send a message M2.
• Note that all processes received M2.

c) Confirm that all processes received M1 and then M2. Process 2
received M1 because it was appended to M2.

3.10.7 No-Waiting Causal Broadcast with Garbage Collection

The next protocol we present is an optimization of the previous one. It intends
to circumvents its main disadvantage by deleting messages from the past list.

3.10 Hands-On 117

When the protocol delivers a message, it broadcasts an acknowledgment to
all other processes; when an acknowledgment for the same message has been
received from all correct processes, this message is removed from the past
list.

The communication stack used to implement the protocol is the following:

SampleAppl
Reliable CO

(implemented by Garbage Collection Of Past)
Delay

Reliable Broadcast
(implemented by Lazy RB)

Perfect Failure Detector
(implemented by TcpBasedPFD)

Best-Effort Broadcast
(implemented by Basic Broadcast)

Perfect Point-to-Point Links
(implemented by TcpBasedPerfectP2P)

The protocol implementation is depicted in Listing 3.7.

Listing 3.7. No-Waiting Reliable Causal Order Broadcast with Garbage Collection
implementation

package appia.protocols.tutorialDA.gcPastCO;

public class GCPastCOSession extends Session {
Channel channel;
int seqNumber=0;
LinkedList delivered ; // Set of delivered messages.
LinkedList myPast; // Set of messages processed by this element.
private ProcessSet correct; // Set of the correct processes.
LinkedList acks; // Set of the msgs not yet acked by all correct processes.

public GCPastCOSession(Layer l) {
super(l);

}

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)e);
else if (e instanceof AckEvent)

handleAck((AckEvent)e);
else if (e instanceof SendableEvent){

if (e.getDir()==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
}else if (e instanceof Crash)

handleCrash((Crash)e);
else{

e.go();
}

}

public void handleChannelInit (ChannelInit e){

118 3. Reliable Broadcast

e.go();
this.channel = e.getChannel();
delivered=new LinkedList();
myPast=new LinkedList();
acks=new LinkedList();

}

public void handleProcessInit (ProcessInitEvent e){
correct = e.getProcessSet();
e.go();

}

public void handleSendableEventDOWN (SendableEvent e){
// same as the handleSendableEventDOWN method of CONoWaitingSession
// ...

}

public void handleSendableEventUP (SendableEvent e){
ExtendedMessage om=(ExtendedMessage)e.getMessage();
int seq=om.popInt();

//checks to see if this msg has been already delivered...
if (! isDelivered((InetWithPort)e.source,seq)){

//size of the past list of this msg
int pastSize=om.popInt();
for(int k=0;k<pastSize;k++){

String className=om.popString();
InetWithPort msgSource=InetWithPort.pop(om);
int msgSeq=om.popInt();
int msgSize=om.popInt();
byte[] msg=(byte[])om.pop();

// if this msg hasn’t been already delivered,
// we must deliver it prior to the one that just arrived!
if (! isDelivered(msgSource,msgSeq)){

//composing and sending the msg!
SendableEvent se =

(SendableEvent) Class.forName(className).newInstance();
se .setChannel(channel);
se .setDir(Direction.UP);
se .setSource(this);
ExtendedMessage aux om = new ExtendedMessage();
aux om.setByteArray(msg,0,msgSize);
se .setMessage(aux om);
se .source=msgSource;

se . init ();
se .go();

//this msg has been delivered!
ListElement le=new ListElement(se,msgSeq);
delivered .add(le);
myPast.add(le);

//let’s send the ACK for this msg
sendAck(le);

}
}

//cloning the event just received to keep it in the mypast list
SendableEvent e aux=(SendableEvent)e.cloneEvent();

e.setMessage(om);
e.go();

3.10 Hands-On 119

ListElement le=new ListElement(e aux,seq);
delivered.add(le);

//this msg is already in the past list . It was added on the sending!!!!
if (!e aux.source.equals(correct .getSelfProcess (). getInetWithPort()))

myPast.add(le);

//let’s send the ACK for this msg
sendAck(le);

}

}

private void sendAck(ListElement le){
int index=−1;
//search for it in the acks list :
for(int i=0;i<acks.size (); i++){

if (((AckElement)acks.get(i)).seq==le.seq &&
((AckElement)acks.get(i)).source.equals((InetWithPort)le.se.source)){
index=i;
i=acks.size ();

}
}

if (index==−1){
//let’s create it !
AckElement ael=new AckElement(le.seq,(InetWithPort)le.se.source);
acks.add(ael);
index=acks.size()−1;

}

((AckElement)acks.get(index)).regAck(correct.getSelfProcess().getInetWithPort());

AckEvent ae=new AckEvent(channel, Direction.DOWN, this);
ExtendedMessage om = new ExtendedMessage();
InetWithPort.push((InetWithPort)le.se.source,om);
om.pushInt(le.seq);
ae.setMessage(om);
ae. init ();
ae.go();

}

boolean isDelivered(InetWithPort source,int seq){
// equal to the isDelivered method of CONoWaitingSession class
// ...

}

public void handleAck(AckEvent e){
//my ACK was already registered when the AckEvent was sent
if (e.source.equals(correct .getSelfProcess (). getInetWithPort()))

return;

ExtendedMessage om=(ExtendedMessage)e.getMessage();
int seq=om.popInt();
InetWithPort iwp=InetWithPort.pop(om);

int index=−1;
//search for it in the acks list :
for(int i=0;i<acks.size (); i++){

if (((AckElement)acks.get(i)).seq==seq &&
((AckElement)acks.get(i)).source.equals(iwp)){
index=i;
i=acks.size ();

}
}

120 3. Reliable Broadcast

if (index==−1){
//let’s create it !
AckElement ael=new AckElement(seq,iwp);
acks.add(ael);
index=acks.size()−1;

}

((AckElement)acks.get(index)).regAck((InetWithPort)e.source);

// if all correct processes have already acked this msg
if (getCorrectSize()==((AckElement)acks.get(index)).processes.size()) {

// removes the entry for this msg from the myPast list
for(int k=0;k<myPast.size();k++){

if (((ListElement)myPast.get(k)).se.source.equals(iwp) &&
((ListElement)myPast.get(k)).seq==seq){
myPast.remove(k);
k=myPast.size();

}
}
// removes the entry for this msg from the acks list
acks.remove(index);

}
}

public void handleCrash(Crash e){
correct .setCorrect(e.getCrashedProcess(),false);
e.go();

}

private int getCorrectSize() {
int i ;
int count=0;
for (i=0 ; i < correct.getSize () ; i++)

if (correct .getProcess(i). isCorrect())
count++;

return count;
}

}//end CONoWaitingSession

class ListElement{
SendableEvent se;
int seq;

public ListElement(SendableEvent se, int seq){
this.se=se;
this.seq=seq;

}

SendableEvent getSE(){
return se;

}

int getSeq(){
return seq;

}
}

class AckElement{
int seq;
InetWithPort source;
LinkedList processes ; // the set of processes that already acked this msg

public AckElement(int seq, InetWithPort source){
this.seq=seq;
this.source=source;
processes=new LinkedList();

3.10 Hands-On 121

}

void regAck(InetWithPort p){
processes.add(p);

}
}

Try It. To test the implementation of the no-waiting reliable causal order
broadcast with the garbage collection protocol, we will use the same test
application that we have used for the basic broadcast. Please refer to the
corresponding “try it” section for details.

The prot parameter that should be used in this case is “conowgc.” Note
that this protocol uses the perfect failure detector module. As described in
the previous chapter, this module needs to be activated. For this purpose,
the test application also accepts the startpfd command; do not forget to
initiate the PFD at every processes by issuing the startpfd request on the
command line before testing the protocol.

To run some simple tests, execute the following steps:

1. Open three shells/command prompts.
2. In each shell go to the directory where you have placed the supplied code.
3. In each shell launch the test application, SampleAppl, giving a different

n value (0, 1 or 2) and specifying the qos as conowgc.
• In shell 0 execute:

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 0 \

-qos conowgc

• In shell 1 execute:

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

-qos conowgc

• In shell 2 execute:

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 2 \

-qos conowgc

Note: If the error NoClassDefError has appeared, confirm that you are
at the root of the supplied code.

Now that processes are launched and running, you may try the following
three distinct executions:

122 3. Reliable Broadcast

1. Execution I and II: Since this protocol is very similar with the previ-
ous one, the two executions presented in the previous section can be
applied to this protocol. Note that the line of code in demo/tutorial-
DA/SampleAppl.java that has to be altered is now the seventh of the
getCOnoWGCChannel method.

2. Execution III:(this execution is to be done with the delay layer in the
protocol stack.)
a) In shell 0, send a message M1 (type bcast M1 and press enter).

• Note that process 2 did not receive M1.
b) In shell 1, send a message M2.

• Note the size of the message that was sent and note also that all
processes received M2.

c) In shell 2, send a message M3.
• Note the smaller size of the message that was sent and note also

that all processes received M3.
d) Confirm that all processes received M1, M2, and M3 in the correct

order.

3.10.8 Waiting Causal Broadcast

The communication stack used to implement the protocol is the following:

SampleAppl
Reliable Casual Order

(implemented by Waiting CO)
Delay

Reliable Broadcast
(implemented by Lazy RB)

Perfect Failure Detector
(implemented by TcpBasedPFD)

Best-Effort Broadcast
(implemented by Basic Broadcast)

Perfect Point-to-Point Links
(implemented by TcpBasedPerfectP2P)

The protocol implementation is depicted in Listing 3.8.

Listing 3.8. Waiting Causal Broadcast implementation

package appia.protocols.tutorialDA.waitingCO;

public class WaitingCOSession extends Session{
Channel channel;
private ProcessSet correct; // Set of the correct processes.
private LinkedList pendingMsg; // The list of the msg that are waiting to be delivered
int [] vectorClock;

public WaitingCOSession(Layer l){
super(l);

}

3.10 Hands-On 123

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)e);
else if (e instanceof SendableEvent){

if (e.getDir()==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
}else{

e.go();
}

}

public void handleChannelInit (ChannelInit e){
e.go();
this.channel = e.getChannel();
pendingMsg=new LinkedList();

}

public void handleProcessInit (ProcessInitEvent e){
correct=e.getProcessSet();
vectorClock=new int[correct.getSize()];
Arrays. fill (vectorClock,0);
e.go();

}

public void handleSendableEventDOWN (SendableEvent e){
//i’m sending a msg therefore increments my position in the vector clock!
vectorClock[correct .getSelfRank()]++;

//add the vector clock to the msg from the appl
ExtendedMessage om=(ExtendedMessage)e.getMessage();
om.push(vectorClock);

e.go();
}

public void handleSendableEventUP (SendableEvent e){
//get the vector clock of this msg!
ExtendedMessage om=(ExtendedMessage)e.getMessage();
int [] vc msg=(int[]) om.pop();

if (canDeliver(correct .getRank((InetWithPort)e.source),vc msg)){
e.go();

if (!e.source.equals(correct . getSelfProcess (). getInetWithPort()))
vectorClock[correct .getRank((InetWithPort)e.source)]++;

checkPending();
}else{

om.push(vc msg);
pendingMsg.add(e);

}
}

private boolean canDeliver(int rankSource,int[] vc msg){
boolean ret=false;
if (vectorClock[rankSource] >= vc msg[rankSource]−1)

ret=true;

for(int i=0;i < vectorClock.length;i++){
if (i!=rankSource && vc msg[i] > vectorClock[i])

ret=false;

124 3. Reliable Broadcast

}

return ret;
}

private void checkPending(){
// this list will keep the information about
// which messages can be removed from the pending list!!!
boolean[] toRemove=new boolean[pendingMsg.size()];
Arrays. fill (toRemove,false);
SendableEvent e aux;

//runs through the pending List to search for msgs that can already be delivered
for(int i=0;i<pendingMsg.size();i++){

e aux=(SendableEvent) pendingMsg.get(i);
ExtendedMessage om=(ExtendedMessage)e aux.getMessage();
int [] vc msg=(int[])om.pop();

int sourceRank=correct.getRank((InetWithPort)e aux.source);

if (canDeliver(sourceRank,vc msg)){
e aux.go();

if (!e aux.source.equals(correct .getSelfProcess (). getInetWithPort()))
vectorClock[correct .getRank((InetWithPort)e aux.source)]++;

toRemove[i]=true;
}else{

om.push(vc msg);
}

}

int countRemoved=0;
//now, let’s check the toRemove list to clean the pendingMsg list
for(int k=0;k<toRemove.length;k++){

if (toRemove[k]){
pendingMsg.remove(k−countRemoved);
countRemoved++;

}
}

}
}

Try It. To test the implementation of the no-waiting reliable causal or-
der broadcast with garbage collection protocol, we will use the same test
application that we have used for the basic broadcast. Please refer to the
corresponding “try it” section for details.

The prot parameter that should be used in this case is “cow.” Note that
this protocol uses the perfect failure detector module. As described in the
previous chapter, this module needs to be activated. For this purpose, the
test application also accepts the startpfd command; do not forget to initiate
the PFD at every process by issuing the startpfd request on the command
line before testing the protocol.

To run some simple tests, follow the same steps as described in the two
previous “try it” sections, except that the qos given must be cow. You may
try the two following executions:

1. Execution I:

3.11 Exercises 125

a) In shell 0, send a message M1 (type bcast M1 and press enter).
• Note that all processes received M1.

b) In shell 1, send a message M2.
• Note that all processes received M2.

c) Confirm that all processes received M1 and then M2.
2. Execution II: For this execution it is necessary to first modify file demo/-

tutorialDA/SampleAppl.java. The seventh line of the getCOWChannel
method should be uncommented in order to insert a test layer that allows
the injection of delays in messages sent between process 0 and process 2.
After modifying the file, it is necessary to compile it.

a) In shell 0, send a message M1.
• Note that process 2 did not receive M1.

b) In shell 1, send a message M2.
• Note that process 2 also did not receive M2.

c) Wait for process 2 to receive the messages.
• Note that process 2 did not receive M1, immediately, due to the

presence of the Delay layer; and it also did not receive M2 im-
mediately, because it had to wait for M1 to be delivered, as M1
preceded M2.

3.11 Exercises

Exercise 3.1 Consider a process p that rbBroadcasts a message m in the
“Lazy Reliable Broadcast” algorithm. Can p rbDeliver m before bebBroad-
casting it.

Exercise 3.2 Modify the “Lazy Reliable Broadcast” algorithm to reduce the
number of messages sent in case of failures.

Exercise 3.3 Some of the algorithms given in this chapter have the processes
continuously fill their different message buffers without emptying them. Mod-
ify them to remove unnecessary messages from the following buffers:

1. from[pi] in the “Lazy Reliable Broadcast” algorithm;
2. delivered in all reliable broadcast algorithms;
3. pending in the “All-Ack Uniform Reliable Broadcast” algorithm.

Exercise 3.4 What do we gain if we replace bebBroadcast with rbBroadcast
in our “Majority-Ack Uniform Reliable Broadcast” algorithm?

Exercise 3.5 Consider our “All-Ack Uniform Reliable Broadcast” algorithm:
what happens if each of the following properties of the failure detector is vio-
lated?

126 3. Reliable Broadcast

1. accuracy
2. completeness

Exercise 3.6 Our “All-Ack Uniform Reliable Broadcast” algorithm can be
viewed as an extension of our “Eager Reliable Broadcast” algorithm. Would
we gain anything by devising a uniform reliable broadcast algorithm that would
be an extension of our “Lazy Reliable Broadcast” algorithm, i.e., can we have
the processes not relay messages unless they suspect the sender?

Exercise 3.7 Can we devise a uniform reliable broadcast with an eventually
perfect failure detector but without the assumption of a correct majority of
the processes?

Exercise 3.8 Give the specification of a logged reliable broadcast abstraction
(i.e., a weaker variant of Module 3.6) and an algorithm that implements it
(i.e., a simpler variant of “Logged Majority-Ack URB”).

Exercise 3.9 Our “Eager Probabilistic Broadcast” algorithm assumes that
the connectivity is the same among every pair of processes. In practice, it may
happen that some processes are at shorter distances and connected by more
reliable links than others. For instance, the underlying network topology could
be a set of local-area networks connected by long-haul links. Propose methods
to exploit the topology in gossip algorithms.

Exercise 3.10 Compare our causal broadcast property with the following
property: “if a process delivers messages m1 and m2, and m1 → m2, then the
process must deliver m1 before m2.”

Exercise 3.11 Can we devise a best-effort broadcast algorithm that satisfies
the causal delivery property without being a causal broadcast algorithm, i.e.,
without satisfying the agreement property of a reliable broadcast?

Exercise 3.12 Can we devise a broadcast algorithm that does not ensure the
causal delivery property but only its nonuniform variant: no correct process
pi delivers a message m2 unless pi has already delivered every message m1

such that m1 → m2.

Exercise 3.13 Suggest a modification of the garbage collection scheme to
collect messages sooner than in Algorithm 3.13.

Exercise 3.14 Give a variant of the “Waiting Causal Broadcast” algorithm
that implements uniform causal broadcast.

3.12 Solutions 127

Algorithm 3.15 Simple optimization of Lazy Reliable Broadcast

upon event 〈 rbBroadcast | m 〉 do
delivered := delivered ∪ {m}
trigger 〈 rbDeliver | self, m 〉;
trigger 〈 bebBroadcast | [Data, self, m] 〉;

3.12 Solutions

Solution 3.1 The answer is yes. Every process anyway rbDelivers the mes-
sages as soon as it bebDelivers them. This does not add any guarantee with
respect to rbDelivering the messages before bebBroadcasting them. The event
that we would need to change in our “Lazy Reliable Broadcast” algorithm
would simply be the rbBroadcast event, as depicted in Algorithm 3.15. �

Solution 3.2 In our “Lazy Reliable Broadcast” algorithm, if a process p
rbBroadcasts a message and then crashes, N 2 messages are relayed by the
remaining processes to retransmit the message of process p. This is because
a process that bebDelivers the message of p does not know whether the
other processes have bebDelivered this message or not. However, it would be
sufficient in this case if only one process relays the message of p.

In practice, one specific process, call it leader process pl, might be more
likely to bebDeliver messages: the links to and from this process would be
fast and very reliable, the process would run on a reliable computer, etc. A
process pi would forward its messages to the leader pl, which would coor-
dinate the broadcast to every other process. If the leader is correct, every
process will eventually bebDeliver and rbDeliver every message. Otherwise,
we revert to the previous algorithm, and every process would be responsible
of bebBroadcasting the messages that it bebDelivered. �

Solution 3.3 We discuss each of the three variables (message buffers) in the
following.

• Consider variable from[pi] in the “Lazy Reliable Broadcast” algorithm: the
array from is used exclusively to store messages that are retransmitted in
the case of a failure. Therefore they can be removed as soon as they have
been retransmitted. If pi is correct, they will eventually be bebDelivered.
If pi is faulty, it does not matter if the other processes do not bebDeliver
them.

• Consider variable delivered in all reliable broadcast algorithms. Messages
here cannot be removed. If a process crashes and its messages are retrans-
mitted by two different processes, then a process might rbDeliver the same
message twice if it empties the deliver buffer in the meantime. This would
violate the no duplication property.

128 3. Reliable Broadcast

• Consider variable pending in the “All-Ack Uniform Reliable” broadcast
algorithm: messages can actually be removed as soon as they have been
urbDelivered.

�

Solution 3.4 Nothing, because the “Majority-Ack URB” algorithm does
not assume and hence does not use the guarantees provided by the reliable
broadcast algorithm.

Consider the following scenario, which illustrates the difference between
using bebBroadcast and using rbBroadcast. A process p broadcasts a mes-
sage and crashes. Consider the case where only one correct process q receives
the message (bebBroadcast). With rbBroadcast, all correct processes would
deliver the message. In the urbBroadcast algorithm, q adds the message in
the forward buffer and then bebBroadcasts it. As q is correct, all correct
processes will deliver it, and thus, we have at least the same guarantee as
with rbBroadcast. �

Solution 3.5 Consider a system of three processes: p1, p2, and p3. Assume,
furthermore, that p1 urbBroadcasts a message m. If strong completeness is
not satisfied, then p1 might never urbDeliver m if either of p2 and p3 crashes
and p1 never detects their crash or bebDelivers m from them: p1 would wait
indefinitely for them to relay m. In the case of both the regular and uniform
reliable broadcast algorithms, the validity property can be violated. Assume
now that strong accuracy is violated and p1 falsely suspects p2 and p3 to have
crashed. p1 eventually urbDelivers m. Assume that p1 crashes afterward. It
might be the case that p2 and p3 never bebDelivered m and have no way of
knowing about m and urbDeliver it: uniform agreement is violated. �

Solution 3.6 The advantage of the lazy scheme is that processes do not need
to relay messages to ensure agreement if they do not suspect the sender to
have crashed. In this failure-free scenario, only N − 1 messages are needed
for all the processes to deliver a message. In the case of uniform reliable
broadcast (without a majority), a process can only deliver a message when it
knows that every correct process has seen that message. Hence, every process
should somehow convey that fact, i.e., that it has seen the message. A lazy
scheme would be of no benefit here. �

Solution 3.7 No. We explain why for the case of a system of four processes
{p1, p2, p3, p4} using what is called a partitioning argument. The fact that the
correct majority assumption does not hold means that two out of the four
processes may fail.

Consider an execution where process p1 broadcasts a message m and
assume that p3 and p4 crash in that execution without receiving any message

3.12 Solutions 129

Module 3.11 Interface and properties of logged reliable broadcast

Module:

Name: LoggedReliableBroadcast (log-rb).

Events:

〈 log-rbBroadcast | m 〉, 〈 log-rbDeliver | delivered 〉 with the same meaning
and interface as in logged best-effort broadcast.

Properties:

LURB1: Validity: If pj is correct and pi does not crash, then every mes-
sage broadcast by pi is eventually delivered by pj .

LURB2: No duplication: No message is delivered more than once.

LURB3: No creation: If a message m is delivered by some process pj ,
then m was previously broadcast by some process pi.

LURB4: Agreement: If a message m is delivered by some correct process,
then m is eventually delivered by every correct process.

either from p1 or from p2. Due to the validity property of uniform reliable
broadcast, there must be a time t at which p1 urbDelivers message m.

Consider now an execution that is similar to this one except that p1 and
p2 crash right after time t whereas p3 and p4 are correct: say, they have been
falsely suspected, which is possible with an eventually perfect failure detec-
tor. In this execution, p1 has urbDelivered a message m whereas p3 and p4

have no way of knowing about that message m and eventually urbDelivering
it: uniform agreement is violated. �

Solution 3.8 Module 3.6 defines a logged variant of reliable broadcast. In this
variant, if a correct process delivers a message (i.e., logs the variable delivered
with the message in it), all correct processes should eventually deliver that
message (i.e., log it in their variable delivered).

Algorithm 3.16 implements logged reliable broadcast using stubborn chan-
nels. To broadcast a message, a process first delivers it and then sends it to
all other processes (using stubborn channels). When a message is received
for the first time, it is delivered and sent to all processes. Upon recovery, a
process retrieves the messages it has delivered and sends them to all other
processes.

Consider the agreement property and assume some correct process pi

delivers a message m. If it does not crash, then pi sends the message to all
other processes and all correct processes will deliver the message based on
the properties of the stubborn channels. If it crashes, there is a time after
which pi recovers, retrieves m and sends it to all processes. Again, all correct
processes will deliver the message based on the properties of the stubborn
channels. The validity property follows directly from the stubborn channels.

130 3. Reliable Broadcast

Algorithm 3.16 Reliable Broadcast with Log

Implements:
LoggedReliableBroadcast (log-rb).

Uses:
StubbornPointToPointLink (sp2p).

upon event 〈 Init 〉 do
delivered := ∅;
store (delivered);

upon event 〈 Recovery 〉 do
retrieve (delivered);
trigger 〈 log-rbDeliver | delivered 〉;
forall m ∈ delivered do

forall pi ∈ Π do
trigger 〈 sp2pSend | pi, m 〉;

upon event 〈 log-rbBroadcast | m 〉 do
delivered := delivered ∪ {m};
store (delivered);
trigger 〈 log-rbDeliver | delivered 〉;
forall pi ∈ Π do

trigger 〈 sp2pSend | pi, m 〉;

upon event 〈 sp2pDeliver | pi, m 〉 do
if m �∈ delivered then

delivered := delivered ∪ {m};
store (delivered);
trigger 〈 log-rbDeliver | delivered 〉;
forall pi ∈ Π do

trigger 〈 sp2pSend | pi, m 〉;

The no duplication property is trivially ensured by the algorithm whereas the
no creation property is ensured by the underlying channels.

Let m be any message that is broadcast by some process pi. A process
delivers the message m immediately and the other processes deliver it after
one communication step. �

Solution 3.9 One approach consists in assigning weights to the links con-
necting processes. Weights reflect the reliability of the links. We could easily
adapt our algorithm to avoid redundant transmission by gossiping through
more reliable links with lower probability. An alternative approach consists
in organizing the nodes in a hierarchy that reflects the network topology in
order to reduce the traffic across domain boundaries. �

Solution 3.10 We need to compare the two following properties:

3.12 Solutions 131

1. If a process delivers a message m2, then it must have delivered every
message m1 such that m1 → m2.

2. If a process delivers messages m1 and m2, and m1 → m2, then the process
must deliver m1 before m2.

Property 1 says that any message m1 that causally precedes m2 must only
be delivered before m2 if m2 is delivered. Property 2 says that any delivered
message m1 that causally precedes m2 must only be delivered before m2 if
m2 is delivered.

Both properties are safety properties. In the first case, a process that
delivers a message m without having delivered a message that causally pre-
cedes m violates the property and this is irremediable. In the second case, a
process that delivers both messages without respecting the causal precedence
might violate the property and this is also irremediable. The first property
is, however, strictly stronger than the second. If the first is satisfied, then the
second is. However, it can be the case that the second property is satisfied
whereas the first is not: a process delivers a message m2 without delivering
a message m1 that causally precedes m1. �

Solution 3.11 The answer is no. Assume by contradiction that some broad-
cast algorithm ensures causal order delivery and is not reliable but best-
effort. We would define the abstraction implemented by such an algorithm
with primitives coBroadcast and coDeliver. The only possibility for a broad-
cast to ensure the best-effort properties and not be reliable is to violate the
agreement property: there must be some execution of the algorithm imple-
menting the abstraction where some correct process p coDelivers a message
m that some other process q does not ever coDeliver. Because the algorithm
is best-effort, this can only happen if the original source of the message, say,
r, is faulty.

Assume now that after coDelivering m, process p coBroadcasts a mes-
sage m′. Given that p is correct and the broadcast is best-effort, all correct
processes, including q, coDeliver m′. Given that m precedes m′, q must have
coDelivered m, a contradiction. Hence, any best-effort broadcast that satis-
fies the causal delivery property satisfies agreement and is thus also reliable. �

Solution 3.12 Assume by contradiction that some algorithm does not ensure
the causal delivery property but ensures its nonuniform variant. This means
that the algorithm has some execution where some process p delivers some
message m without delivering a message m′ that causally precedes m. Given
that we assume a model where processes do not self-destruct, p might very
well be correct, in which case it violates even the nonuniform variant. �

Solution 3.13 When removing a message m from the past, we can also
remove all the messages that causally depend on this message—and then re-
cursively those that causally precede these. This means that a message stored

132 3. Reliable Broadcast

Algorithm 3.17 Waiting Uniform Causal Broadcast

Implements:
UniformCausalBroadcast (uco).

Uses:
UniformReliableBroadcast (urb).

upon event 〈 init 〉 do
forall pi ∈ Π do VC[rank(pi)] := 0;
pending := ∅;
ucoDel := 0;

procedure deliver-pending() is
while exists (sx, [Data, VCx, x]) ∈ pending such that

∀pj
:VC[rank(pj)] ≥VCx[rank(pj)] ∧ ucoDel ≥ VCx[rank(self)] do

pending := pending \ (sx, [Data, VCx, x]);
trigger 〈 ucoDeliver | sx, x 〉;
if sx �= self do

VC[rank(sx)] := VC[rank(sx)]+1;
else

ucoDel := ucoDel +1;

upon event 〈 ucoBroadcast | m 〉 do
trigger 〈 urbBroadcast | [Data, VC, m] 〉;
VC[rank(self)] := VC[rank(self)] + 1;

upon event 〈 urbDeliver | pi, [Data, VCm, m] 〉 do
pending := pending ∪ (pi, [Data, VCm, m]);
deliver-pending();

in the past must be stored with its own, distinct past. �

Solution 3.14 Notice first that the “Waiting Causal Broadcast” algorithm
(Algorithm 3.14) does not implement uniform causal broadcast. A process
rcoDelivers a message m before rbBroadcasting it. If p crashes, then no cor-
rect process might ever rcoDeliver m. Using an underlying uniform reliable
broadcast does not make any difference, even if a process does not rcoDeliver
a message until after it has urbBroadcast it.

We present below a variant of Algorithm 3.14 that relies on an under-
lying uniform reliable broadcast communication abstraction defined through
primitives urbBroadcast and urbDeliver. The algorithm (Algorithm 3.17) im-
plements a uniform causal broadcast abstraction defined through primitives
ucoBroadcast and ucoDeliver. The function rank is the same as used in Al-
gorithm 3.14.

When a process ucoBroadcasts a message m, it urbBroadcasts m but does
not ucoDeliver it (unlike in Algorithm 3.14). In fact, no process ucoDelivers
a message m before urbDelivering it. To preserve causality of messages that

3.13 Historical Notes 133

a process ucoDelivers from itself, we add a specific test (through variable
ucoDel). �

3.13 Historical Notes

• The requirements for a reliable broadcast communication abstraction seem
to have originated from the domain of aircraft control and the SIFT system
in 1978 (Wensley 1978).

• The causal broadcast abstraction was discussed in 1987 (Birman and
Joseph 1987a) following the notion of causality initially introduced in
1978 (Lamport 1978).

• Our “No-Waiting Causal Broadcast” algorithm was inspired by one of
the earliest implementations of causal broadcast included in the ISIS
toolkit (Birman and Joseph 1987b).

• Our waiting causal broadcast algorithm was based on the notion of vector
clocks introduced in 1988 (Fidge 1988; Ladin, Liskov, Shrira, and Ghe-
mawat 1990; Schwarz and Mattern 1992). To our knowledge, the most
detailed description of the algorithm, including its correctness proof, was
given in 1998 (Attiya and Welch 1998).

• Reliable and causal broadcast algorithms were presented in a very compre-
hensive way in 1994 (Hadzilacos and Toueg 1994).

• The problem of the uniformity of a broadcast was discussed in 1984 (Hadzi-
lacos 1984) and then further explored in 1993 (Neiger and Toueg 1993).

• In this chapter, we presented algorithms that implement causal broadcast
assuming that all messages are broadcast to all processes in the system.
It is also possible to ensure causal delivery in the cases where individual
messages may be sent to an arbitrary subset of group members, but the
algorithms require a significantly larger amount of control information.
These issues were addressed in 1991 (Raynal, Schiper, and Toueg 1991).

• The idea of applying epidemic dissemination to implementing probabilis-
tically reliable broadcast algorithms have been explored since 1992 (Gold-
ing and Long 1992; Birman, Hayden, Ozkasap, Xiao, Budiu, and Min-
sky 1999; Eugster, Guerraoui, Handurukande, Kouznetsov, and Kermarrec
2003; Eugster, Guerraoui, and Kouznetsov 2004; Kouznetsov, Guerraoui,
Handurukande, and Kermarrec 2001; Kermarrec, Massoulie, and Ganesh
2000; Xiao, Birman, and van Renesse 2002).

• A precise specification of a probabilistic broadcast algorithm was suggested
in 2004 (Eugster, Guerraoui, and Kouznetsov 2004).

• The exploitation of topological features in probabilistic broadcast algo-
rithms was proposed through a mechanism that assigns weights to link
between processes in 1999 (Lin and Marzullo 1999). A similar idea, but us-
ing a hierarchy instead of weights, was proposed later to reduce the traffic
across domain boundaries (Gupta, Kermarrec, and Ganesh 2002).

134 3. Reliable Broadcast

• The first probabilistic broadcast algorithm that did not depend on any
global membership was given in 2003 (Eugster, Guerraoui, Handurukande,
Kouznetsov, and Kermarrec 2003). The idea was refined since then (Voul-
garis, Jelasity, and van Steen 2003; Jelasity, Guerraoui, Kermarrec, and
van Steen 2004).

• The notion of message ages in probabilistic broadcast was introduced in
2001 (Kouznetsov, Guerraoui, Handurukande, and Kermarrec 2001) for
purging messages and ensuring the scalability of process buffers. It was
later refined to balance buffering among processes (Koldehofe 2003). The
idea of flow control in probabilistic broadcast has been developed since
2002 (Rodrigues, Handurukande, Pereira, Guerraoui, and Kermarrec 2003;
Garbinato, Pedone, and Schmidt 2004). Trade-offs between the fanout and
the reliability of the dissemination were explored in 2000 (Kermarrec, Mas-
soulie, and Ganesh 2000).

4. Shared Memory

I always tell the truth, even when I lie.
(Tony Montana – Scarface)

This chapter presents shared memory abstractions. These are distributed pro-
gramming abstractions that encapsulate read-write forms of storage among
processes. These abstractions are called registers because they resemble those
provided by multiprocessor machines at the hardware level, though in many
cases, including in this chapter, they are implemented over processes that
communicate through message passing and do not share any hardware de-
vice. The register abstractions also resemble files in a distributed directory
or shared working spaces in a distributed working environment. Therefore,
understanding how to implement register abstractions helps us understand
how to implement distributed file systems and shared workspaces.

We study here different variants of register abstractions. These differ ac-
cording to the number of processes that are allowed to read and write on
them, as well as on the semantics of their read operations in the face of
concurrency and failures. We distinguish two kinds of semantics: regular and
atomic. We will first consider the (1, N) regular register abstraction. The no-
tation (1, N) means here that one specific process can write and any process
can read. Then we will consider the (1, N) atomic register and the (N, N)
atomic register abstractions. We will consider these abstractions for three of
the distributed system models identified in Chapter 2: the fail-stop, fail-silent,
and fail-recovery models.

4.1 Introduction

4.1.1 Sharing Information in a Distributed System

In a multiprocressor machine, processes typically communicate through
shared memory provided at the hardware level. The shared memory can

136 4. Shared Memory

be viewed as an array of shared registers. The act of building a register
abstraction from a set of processes that communicate by message passing
is sometimes called a shared-memory emulation. The programmer using this
abstraction can develop shared memory algorithms without being aware that,
behind the scenes, processes are actually communicating by exchanging mes-
sages, i.e., there is no physical shared memory. Such emulation is very ap-
pealing because programming with a shared memory is usually considered
significantly easier than with message passing, precisely because the pro-
grammer can ignore the consistency problems introduced by the distribution
of data.

As we pointed out, studying register specifications and algorithms is also
useful when implementing distributed file systems as well as shared working
spaces for collaborative work. For example, the abstraction of a distributed
file that can be accessed through read and write operations is similar to the
notion of a register. Not surprisingly, the algorithms that one needs to devise
to build a distributed file system can be directly inspired by those used to
implement register abstractions. Similarly, when building a shared workspace
in collaborative editing environments, one ends up devising register-like dis-
tributed algorithms.

In the following, we will study two semantics of registers, namely, regular
and atomic. When describing a register abstraction, we will distinguish the
case where the register can be read and (or) written by exactly one process,
and read and (or) written by all processes (i.e., any of the N processes in the
system).

4.1.2 Register Overview

Assumptions. Registers store values that are accessed through two opera-
tions: read and write. The operations of a register are invoked by the processes
of the system to exchange information through the register.

When a process invokes any of these operations and gets back a reply,
we say that the process completes the operation. Each process accesses the
registers in a sequential manner. That is, if a process invokes some operation
(read or write on some register), the process does not invoke any further
operation unless the previous one is complete.

To simplify, we also assume that every register (a) contains only positive
integers and (b) is initialized to 0. In other words, we assume that some
write operation was initially invoked on the register with 0 as a parameter
and completed before any other operation was invoked. Also, for presentation
simplicity, but still without loss of generality, we will also assume that (c)
the values written in the register are uniquely identified, say, by using some
unique timestamps provided by the processes (like we assumed in the previous
chapters that messages that are sent or broadcast are uniquely identified.)

Some of the register abstractions and algorithms we will present make the
assumption that specific processes can write and specific processes can read.

4.1 Introduction 137

For example, the simplest case is a register with one writer and one reader,
denoted by (1, 1): the writer is a specific process known in advance, and so
is the reader. We will also consider registers with one writer and N readers
(the writer is here a specific process and any process can be a reader). A
register with X writers and Y readers is also called an (X, Y) register. When
X = Y = N (where N is the nu,mber of processes in the system) any process
can be a writer and a reader at the same time.

Signature and Semantics. Basically, a read returns the value in the reg-
ister and a write updates the value of the register. More precisely:

1. A read operation does not take any input parameter and has one ouput
parameter. This output parameter presumably contains the current value
of the register and constitutes the reply of the read invocation. A read
does not modify the content of the register.

2. A write operation takes an input parameter and returns a simple confir-
mation that the operation has taken place. This confirmation constitutes
the reply of the write invocation. The write operation aims at modifying
the content of the register.

If a register is used (read and written) by a single process, and we as-
sume there is no failure, we define the specification of a register through the
following simple properties:

• Liveness. Every operation eventually completes.
• Safety. Every read returns the last value written.

In fact, even if a register is accessed by a set of processes one at a time (i.e.,
in a serial manner) and without crashing, we could still define the specification
of the register using those simple properties. By serial access we mean that a
process does not invoke an operation on a register if some other process has
invoked an operation and has not received any reply. (Note that this notion
is stronger than the notion of sequentiality introduced above.)

Failure Issues. If we assume that processes might fail, say, by crashing, we
cannot require that any process that invokes an operation eventually com-
pletes that operation. Indeed, a process might crash right after invoking an
operation and would not have the time to complete this operation (get the
actual reply). We say that the operation has failed. (Remember that failures
are unpredictable and this is precisely what makes distributed computing
challenging.)

However, it makes sense to require that if a process pi invokes some oper-
ation and does not subsequently crash, then pi eventually gets back a reply to
its invocation, i.e., completes its operation. That is, any process that invokes
a read or write operation, and does not crash, should eventually return from
that invocation. In this sense, its operation should not fail. This requirement
makes the register fault-tolerant. It is also sometimes said to be robust or
wait-free.

138 4. Shared Memory

If we assume that processes access a register in a serial manner, we may,
at first glance, still want to require from a read operation that it return
the last value written. We need, however, to be careful here with failures in
defining the very notion of last. To illustrate the underlying issue, consider
the following situation.

• Assume that a process p1 invokes a write on the register with value v1

and completes its write. Later on, some other process p2 invokes a write
operation on the register with a new value v2, and then p2 crashes before
the operation completes: before it crashes, p2 does not get any confirmation
that the operation has indeed taken place, i.e., the operation has failed.
Now, if even later on process p3 invokes a read operation on the register,
what is the value supposed to be returned to p3? Should it be v1 or v2?

In fact, we will consider both values to be valid replies. Intuitively, p2 may
or may not have the time to complete the write operation. In other words,
when we require that a read returns the last value written, we consider the
following two cases as possible:

1. The value returned has indeed been written by the last process that com-
pleted its write, even if some process invoked a write later but crashed.
In this case, no future read should be returning the value of the failed
write; everything happens as if the failed operation was never invoked.

2. The value returned was the input parameter of the last write operation
that was invoked, even if by some process that crashed before the com-
pletion of the actual operation. Everything happens as if the operation
that failed actually completed.

The difficulty underlying the problem of failure just discussed has actually
to do with a failed write (i.e. of the crashed process p2) being concurrent with
a read (i.e., the one that comes from p3 after the crash). This happens even
if a process does not invoke an operation while some other process is waiting
for a reply. This is a particular case of the more general case of concurrency,
which we discuss now.

Concurrency Issues. In practice, executions are not serial (and clearly not
sequential). What should we expect from a value returned by a read operation
that is concurrent with some write operation? What is the meaning of the
last write in this context? Similarly, if two write operations were invoked
concurrently, what is the last value written? Can a subsequent read return
one of the values, and then a read that comes even later return the other?

In this chapter, we will give the specifications of register abstractions
(i.e., regular and atomic) that differ mainly in the way we address these
questions, as well as algorithms that implement each of these specifications.
Roughly speaking, a regular register ensures minimal guarantees in the face of
concurrent and failed operations. An atomic register is stronger and provides
strong properties even in the face of concurrency and failures. To make the

4.1 Introduction 139

specifications more precise, we first introduce some definitions that aim to
capture the intuitions discussed above (remember that, by default, we assume
that a process does nor recover after a crash; later in the chapter, we will
consider the fail-recovery model).

4.1.3 Completeness and Precedence

We first define slightly more precisely the notions of completeness of an op-
eration execution and precedence between operation executions, e.g., read or
write executions. Note that when there is no possible ambiguity, we simply
take operations to mean operation executions.

These notions are defined using the events that occur at the boundary of
an operation at the process that invoked the operation: the request invocation
(read or write invocation) and the return confirmation in the case of a write
or the actual reply value in the case of a read invocation. Each of these events
is assumed to occur at a single indivisible point in time. (Remember that we
assume a fictional notion of global time, used to reason about specifications
and algorithms. This global time is, however, not directly accessible to the
processes.)

• We say that an operation is complete if both events at the boundaries of the
operation have occured. This, in particular, means that the process which
invoked the operation op did not crash before being informed that op is
terminated, i.e., before the confirmation event occured in case of a write
and a reply value in the case of a read invocation.

• A failed operation is one that was invoked (i.e., the request was issued), but
the process which invoked it crashed before obtaining the corresponding
confirmation.

• An operation op is said to precede an operation op’ if the event corre-
sponding to the confirmation of op precedes the event corresponding to
the invocation of op’; It is important to note here that for an operation
op, invoked by some process p1, to precede an operation op’ (invoked by a
different process) p2, op must be complete.

• If two operations are such that one precedes the other, then we say that
the operations are sequential. Otherwise we say that they are concurrent.

Basically, the operation of a register can be viewed as a partial order of its
read and write operations. If only one process invokes operations, then the
order is total. When there is no concurrency and all operations are complete
(serial execution), the order is also total.

• When a read operation r returns a value v, and that value v was the input
parameter of some write operation w, we say that r (on v) has (was) read
from w.

• A value v is said to be written when the write of v is complete.

140 4. Shared Memory

In the following, we give specifications of various forms of registers and
algorithms to implement them. The algorithms will implement arrays of reg-
isters as these will be useful in other algorithms. As a convention, the register
under consideration will simply be denoted by reg.

4.2 (1, N) Regular Register

We give here the specification and underlying algorithms of a (1, N) regular
register, i.e., one specific process, say, p1 can invoke a write operation on the
register, and any process can invoke a read operation on that register. The
notion of regularity, which we explain below, is not considered for multiple
writers. (There is no consensus in the distributed computing literature on
how to generalize the notion of regularity to multiple writers).

4.2.1 Specification

The interface and properties of a (1, N) regular register are given in Mod-
ule 4.1. In short, a read that is not concurrent with any write returns the last
value written. If there is a concurrent write, the read is allowed to return the
last value written or the value concurrently being written. Note that if a pro-
cess invokes a write and crashes (without recovering), the write is considered
to be concurrent with any read that did not precede it. Hence, such a read
can return the value that was supposed to be written by the failed write or
the last value written before the failed write was invoked. Note also that, in
any case, the value returned must be read from some write operation invoked
on the register. That is, a value read must in any case be a value that some
process has tried to write (even if the write was not complete): it cannot be
invented out of thin air. This can be the initial value of the register, which
we assume to have been written initially by the writer.

To illustrate the specification of a regular register, we depict in Figure 4.1
two executions. The first is not permitted by a regular register whereas the
second is. In the first case, even when there is no concurrency, the read does
not return the last value written.

4.2.2 Fail-Stop Algorithm: Read-One Write-All Regular Register

Algorithm 4.1 implements a (1, N) regular register. The simplicity of this
algorithm derives from the fact that it relies on a perfect failure detector
(fail-stop model). The crash of a process is eventually detected by all correct
processes (strong completeness), and no process is detected to have crashed
until it has really crashed (strong accuracy).

The algorithm has each process store a copy of the current register value
in a variable that is local to the process. In other words, the value of the regis-
ter is replicated at all processes. The writer updates the value of all processes

4.2 (1, N) Regular Register 141

Module 4.1 Interface and properties of a (1, N) regular register

Module:

Name: (1, N)RegularRegister (on-rreg).

Events:

Request: 〈 on-rregRead | reg 〉: Used to invoke a read operation on register
reg.
Request: 〈 on-rregWrite | reg, v 〉: Used to invoke a write operation of
value v on register reg.

Confirmation: 〈 on-rregReadReturn | reg, v 〉: Used to return v as a
response to the read invocation on register reg and indicates that the
operation is complete.
Confirmation: 〈 on-rregWriteReturn | reg 〉: Confirms that the write
operation is complete.

Properties:

RR1: Termination: If a correct process invokes an operation, then the
process eventually receives the corresponding confirmation.

RR2: Validity: A read returns the last value written, or the value concur-
rently written.

write(5) write(6)
p1

p2

read() -> 5 read() -> 6read() -> 0

(a) non-regular

write(5) write(6)
p1

p2

read() -> 5 read() -> 5 read() -> 6

(b) regular

Fig. 4.1: Register execution

it does not detect to have crashed by broadcasting a Write message with
the new value. All processes acknowledge the receipt of the new value with an
Ack message. The write operation is considered complete when an acknowl-
edgment has been received from every correct process. When the write of a
new value is complete, all processes that did not crash have the new value.
The reader simply returns the value it has stored locally. In other words, the
reader reads one value and the writer writes all values. Hence the name of
Algorithm 4.1: “Read-One Write-All.”

Besides a perfect failure detector, our algorithm makes use of two under-
lying communication abstractions: perfect point-to-point links as well as a
best-effort broadcast.

Notice that, as we pointed out, our “Read-One Write-All” algorithm (just
like the many algorithms we will describe below) implements an array of reg-
isters. Indeed, we will be using multiple regular registers to build stronger
abstractions later in this chapter and in the next chapter. Hence, our algo-

142 4. Shared Memory

Algorithm 4.1 Read-One Write-All

Implements:
(1, N)RegularRegister (on-rreg).

Uses:
BestEffortBroadcast (beb);
PerfectPointToPointLinks (pp2p);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
forall r do

value[r] := 0;
writeSet[r] := ∅;

correct := Π ;

upon event 〈 crash | pi 〉 do
correct := correct \ {pi};

upon event 〈 on-rregRead | reg 〉 do
trigger 〈 on-rregReadReturn | reg, value[reg] 〉;

upon event 〈 on-rregWrite | reg, val 〉 do
trigger 〈 bebBroadcast | [Write, reg, val] 〉;

upon event 〈 bebDeliver | pj , [Write, reg, val] 〉 do
value[reg] := val;
trigger 〈 pp2pSend | pj , [Ack, reg] 〉;

upon event 〈 pp2pDeliver | pj , [Ack, reg] 〉 do
writeSet[reg] := writeSet[reg] ∪ {pj};

upon exists r such that correct ⊆ writeSet[r] do
writeSet[r] := ∅;
trigger 〈 on-rregWriteReturn | r 〉;

rithm is designed to maintain the state of an array of registers. Similarly,
all messages carry the identifier of the register which is the target of the
operation being executed.

Correctness. The termination property is straightforward for any read invo-
cation. A process simply reads its local value. For a write invocation, termi-
nation follows from the properties of the underlying communication abstrac-
tions (reliable delivery of perfect point-to-point communication and validity
of best-effort broadcast) as well as the completeness property of the perfect
failure detector (every crashed process is eventually detected by every correct
process). Any process that crashes is detected and any process that does not
crash sends back an acknowledgment which is eventually delivered by the
writer.

4.2 (1, N) Regular Register 143

write(5)
p2

write(6)

read() -> 5p1

Fig. 4.2: A non-regular register execution

Consider validity. Assume that there is no concurrency and all operations
are complete. Consider a read invoked by some process pi and assume, fur-
thermore, that v is the last value written. Due to the accuracy property of the
perfect failure detector, at the time when the read is invoked, all processes
that did not crash have value v. These include pi, which returns v, which is
the last value written.

Assume now that the read is concurrent with some write of a value v and
the value written prior to v was v′ (this could be the initial value 0). Due to
the properties of the communication abstractions (no creation properties), no
message is altered and no value can be stored at a process unless the writer
has invoked a write operation with this value as a parameter. Hence, at the
time of the read, the value can either be v or v′.

Performance. Every write operation requires two communication steps cor-
responding to the Write and Ack exchange between the writer and all
processes, and at most 2N messages. A read operation does not require any
remote communication: it is purely local.

4.2.3 Fail-Silent Algorithm: Majority Voting Regular Register

It is easy to see that if the failure detector is not perfect, the “Read-One
Write-All” algorithm (Algorithm 4.1) might not ensure the validity property
of the register. We depict this possibility through the execution illustrated
in Figure 4.2. Even without concurrency and without any failure, process p2

returns a value that was not the last value written. This might happen if
p1, the process that has written that value, has falsely suspected p2 to have
crashed, and p1 returned before making sure p2 had locally stored the new
value, 6.

In the following, we give a regular register algorithm in a fail-silent model.
This algorithm does not rely on any failure detection scheme. Instead, the
algorithm assumes a majority of the correct processes. We leave it as an ex-
ercise (end of this chapter) to show that this majority assumption is actually
needed, even when an eventually perfect failure detector can be used.

The general principle of the algorithm requires for the writer and readers
to use a set of witness processes that keep track of the most recent value of
the register. The witnesses must be chosen in such a way that at least one
witness participates in any pair of such operations, and does not crash in the
meantime. Sets of witnesses must intuitively form quorums: their intersection
should not be empty. This is ensured by the use of majorities, for which reason

144 4. Shared Memory

Algorithm 4.2 Majority Voting (write)

Implements:
(1, N)RegularRegister (on-rreg).

Uses:
BestEffortBroadcast (beb);
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
forall r do

sn[r] := 0;
v[r] := 0;
acks[r] := 0;
reqid[r] := 0;
readSet[r] := ∅;

upon event 〈 on-rregWrite | r, val 〉 do
sn[r] := sn[r] + 1;
v[r] := val;
acks[r] := 1;
trigger 〈 bebBroadcast | [Write, r, sn[r], val] 〉;

upon event 〈 bebDeliver | pj , [Write, r, tstamp, val] 〉 do
if tstamp > sn[r] then

v[r] := val;
sn[r] := tstamp;
trigger 〈 pp2pSend | pj , [Ack, r, tstamp] 〉;

upon event 〈 pp2pDeliver | pj , [Ack, r, ts] 〉 do
if ts=sn[r] then

acks[r] := acks[r] + 1;

upon exists r such that acks[r] > N/2 do
trigger 〈 on-rregWriteReturn | r 〉;

Algorithm 4.2–4.3 is called a “Majority Voting” algorithm. The algorithm
implements a (1, N) regular register where one specific process is the writer,
say, p1, and any process can be the reader.

Similarly to our previous “Read-One Write-All” algorithm (Algorithm 4.1),
our“Majority Voting” algorithm (Algorithm 4.2–4.3) also has each process
store a copy of the current register value in a local variable. In addition, the
“Majority Voting” algorithm relies on a timestamp (sometimes also called a
sequence number) associated with each value stored locally at a process. This
timestamp is defined by the writer p1, and intuitively represents the version
number of the value. It measures the number of times the write operation
has been invoked.

For p1 (the unique writer) to write a new value, it defines a new timestamp
by incrementing the one it already had and associates it with the value to
be written. Then p1 broadcasts a Write message to all processes, and has

4.2 (1, N) Regular Register 145

Algorithm 4.3 Majority Voting (read)

upon event 〈 on-rregRead | r 〉 do
reqid[r] := reqid[r] +1;
readSet[r] := ∅;
trigger 〈 bebBroadcast | [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver | pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend | pj ,[ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 pp2pDeliver | pj , [ReadValue, r, id, tstamp, val] 〉 do
if id=reqid[r] then

readSet[r] := readSet[r] ∪ {(tstamp, val)};

upon exists r such that (|readSet[r]| > N/2) do
(v, ts) := highest(readSet[r]);
v[r] := v;
sn[r] := ts;
trigger 〈 on-rregReadReturn | r, v) 〉;

a majority adopt this value (i.e., store it locally) as well as its timestamp.
Process p1 considers the write to be complete (and hence returns the write
confirmation) when p1 has received an acknowledgment from a majority of
the processes indicating that they have indeed adopted the new value and the
corresponding timestamp. It is important at this point to note that a process
pi will adopt a value sent by the writer only if pi has not already adopted a
more recent value (with a larger timestamp). Process pi might have adopted
an old value if, for instance, p1 has sent a value v1, and then later a value
v2, and process pi receives v2 before v1. This would mean that pi was not in
the majority that made it possible for p1 to complete its writing of v1 before
proceeding to the writing of v2.

To read a value, a reader process broadcasts a Read message to all other
processes and selects the value with the largest timestamp from a majority.
The processes in this majority act as witnesses of what was written before.
This majority not need to be the same as the one used by the writter. Choos-
ing the largest timestamp ensures that the last value is chosen, provided there
is no concurrency. To simplify the presentation of our “Majority Voting” al-
gorithm (Algorithm 4.2–4.3), the reader uses a function highest that returns
the value with the largest timestamp from a set of pairs (value, timestamp) in
the set of all pairs returned by a majority. Note that every request is tagged
with a unique identifier, and that the corresponding replies carry this iden-
tifier. In the case of the writer, the tag is simply the timestamp associated
with the value written. In the case of the reader, it is a specific sequence
number solely used for identification purposes. In this way, the reader can
figure out whether a given reply message matches a given request message
(and is not an old reply). This is important here since the reader could, for

146 4. Shared Memory

instance, confuse two Ack messages: one for an old read invocation and one
for a new one. This might lead to the violation the validity property of the
register.

Clearly, and just like our “Read-One Write-All” algorithm, our “Majority
Voting” algorithm implements an array of registers. The algorithm is de-
signed to maintain the state of an array of registers. It keeps an array of all
relevant state variables, indexed by the identifier of each register. Similarly,
all messages carry the identifier of the register which is the target of the
operation being executed.

Correctness. The termination property follows from the properties of the un-
derlying communication abstractions and the assumption that of a majority
of the correct processes exists in the system.

Consider now validity. Consider first the case of a read that is not con-
current with any write. Assume, furthermore, that a read is invoked by some
process pi and the last value written by the writer p1, say, v, has timestamp
sn1 at p1. This means that, at the time when the read is invoked, a majority
of the processes have timestamp sn1, and there is no larger timestamp in the
system. This is because the writer uses increasing timestamps.

Before returning from the read operation, pi consults a majority of the
processes and hence gets at least one value with timestamp sn1. This is be-
cause majorities always intersect (i.e., they form quorums). Process pi hence
returns value v with timestamp sn1, which is indeed the last value written.
Consider now the case where the read is concurrent with some write of value
v and timestamp sn1, and the previous write was for value v′ and timestamp
sn1 − 1. If any process returns sn1 to pi, then pi will return v, which is a
valid reply. Otherwise, at least one process will return sn1 − 1 and pi will
return v′, which is also a valid reply.

Performance. Every write operation requires one communication roundtrip
between the writer and a majority of the processes, and every read requires
one communication roundtrip between the reader and a majority of the pro-
cesses. In both operations, at most 2N messages are exchanged.

4.3 (1, N) Atomic Register

We give here the specification and underlying algorithms of a (1, N) atomic
register. The generalization to multiple writers will be discussed in the next
section.

4.3.1 Specification

With a regular register specification, nothing prevents a process from reading
a value v and then v′, even if the writer process has written v′ and then v,
as long as the writes and the reads are concurrent. Furthermore, consider a

4.3 (1, N) Atomic Register 147

write(5) write(6)
p1

p2

read() -> 6read() -> 5 read() -> 5

(a) non-atomic

write(5) write(6)
p1

p2

read() -> 5 read() -> 5 read() -> 6

(b) atomic

Fig. 4.3: Register executions

register on which only one write operation is invoked by the writer p1, say,
with some value v, and p1 crashes before returning from the operation and
does not recover, i.e., the operation is not complete. A subsequent reader
might read v whereas another, coming even later, might not, i.e., it might
return the initial value of the register. An atomic register is a regular register
that prevents such behavior.

The interface and properties of a (1, N) atomic register are given in Mod-
ule 4.2. A (1, N) atomic register is a regular register that, in addition to the
properties of a regular register (Module 4.1) ensures a specific ordering prop-
erty which, roughly speaking, prevents an old value from being read once a
new value has been read.

Typically, with a (1, N) atomic register, a reader process cannot read a
value v′, after some value v was read (possibly by some other process), if
v′ was written before v. In addition, consider a register on which one write
operation was invoked and the writer that invoked this operation, say, with
some value v, crashed before returning from the operation, i.e., the operation
is not complete. Once a subsequent reader reads v, no subsequent reader can
read the initial value of the register.

The execution depicted in Figure 4.3b is that of an atomic register whereas
the execution depicted in Figure 4.3a is not. In the execution of Figure 4.3a,
the ordering property of an atomic register should prevent the read of process
p2 from returning 6 and then 5, given that 5 was written before 6.

It is important to note that none of our previous algorithms implements
a (1, N) atomic register. We illustrate this through the execution depicted
in Figure 4.4 as a counterexample for our “Read-One Write-All” regular
register algorithm (Algorithm 4.1), and the execution depicted in Figure 4.5
as a counterexample for our “Majority Voting” regular register algorithm
(Algorithm 4.2–4.3).

• The scenario of Figure 4.4 can occur with Algorithm 4.1 if during the
second write operation of p1, the new value 6 is received and read by p2

before it is received by p3. Before receiving the new value, p3 will continue
to read the previous value 5 even if its read operation occurs after the read
by p2.

148 4. Shared Memory

Module 4.2 Interface and properties of a (1, N) atomic register

Module:

Name: (1, N)AtomicRegister (on-areg).

Events:

Request: 〈 on-aregRead | reg 〉: Used to invoke a read operation on reg-
ister reg.
Request: 〈 on-aregWrite | reg, v 〉: Used to invoke a write operation of
value v on register reg.

Confirmation: 〈 on-aregReadReturn | reg, v 〉: Used to return v as a
response to the read invocation on register reg and indicates that the
operation is complete.
Confirmation: 〈 on-aregWriteReturn | reg 〉: Confirms that the write
operation has taken place at register reg and is complete.

Properties:

AR1: Termination: If a correct process invokes an operation, the process
eventually receives the corresponding confirmation (same as RR1).

AR2: Validity: A read returns the last value written, or the value concur-
rently written (same as RR2).

AR3: Ordering: If a read returns v2 after a read that precedes it has
returned v1, then v1 cannot be written after v2.

read() -> 5
p2

read() -> 6

p3

read() -> 5

p1

write(5) write(6)

Fig. 4.4: Violation of atomicity in the “Read-One Write-All” regular register
algorithm

• The scenario of Figure 4.5 can occur with Algorithm 4.2-4.3 if p2 has
accessed p1 and p4 in its second read while p3 has accessed p4 and p5 while
p1 is performing is second write (after p2 has been updated but before the
update of p3, p4 and p5). Clearly, this can also occur for Algorithm 4.1.

In the following, we give algorithms that implement the (1, N) atomic register
abstraction. We first describe how to automatically transform any (fail-stop
or fail-silent) (1, N) regular algorithm into a (1, N) atomic register algorithm.
Such a transformation is modular and helps understand the fundamental dif-
ference between atomic and regular registers. It does not however lead to
efficient algorithms. We will later describe how to extend our regular regis-
ter algorithms in an ad hoc way and obtain efficient (1, N) atomic register
algorithms.

4.3 (1, N) Atomic Register 149

read() -> 5

sn = 1

p2

sn = 2

read() -> 6

p1

write(5)

sn = 1

write(6)

sn = 2

p3 sn = 1

p4

p5

sn = 1

sn = 1

sn = 1

Fig. 4.5: Violation of atomicity in the “Majority Voting” regular register
algorithm

read() -> 5
p2

sn = 2sn = 1

read() -> 6read() -> 6

sn = 2

p1

write(5)

sn = 1

write(6)

sn = 2

p3 sn = 1 sn = 1

Fig. 4.6: A (1, N) atomic register execution

4.3.2 Transformation: From (1, N) Regular to (1, N) Atomic

For pedagogical reasons, we divide the problem of transforming any (1, N)
regular register into a (1, N) atomic register algorithm in two parts. We first
explain how to transform any (1, N) regular register algorithm into a (1, 1)
atomic register algorithm and then how to transform any (1, 1) atomic register
algorithm into a (1, N) atomic register algorithm. It is important to note that
these transformations do not use any other means of communication between
processes than the underlying registers.

From (1, N) Regular to (1, 1) Atomic. The first transformation is given
in Algorithm 4.4 and its underlying idea is simple. To build a (1, 1) atomic
register with p1 as a writer and p2 as a reader, we make use of one (1, N)
regular register of which the writer is also p1 and the reader is also p2. Further-
more, the writer p1 maintains a timestamp that it increments and associates
with every new value to be written. The reader also maintains a timestamp,
together with a variable to locally store the latest value read from the reg-
ister. Intuitively, the goal of storing this value is to make sure that an old
value is not returned after a new one has been returned.

In Algorithm 4.4 there is a one-to-one mapping between the atomic reg-
isters maintained by the algorithm (as before, the algorithm maintains an
array of such registers) and the underlying regular registers. That is, once an
operation is invoked on an atomic register of index n, the same index is used
to select the corresponding regular register.

150 4. Shared Memory

Algorithm 4.4 From (1, N) Regular to (1, 1) Atomic Registers

Implements:
(1, 1)AtomicRegister (oo-areg).

Uses:
(1, N)RegularRegister(on-rreg).

upon event 〈 Init 〉 do
forall r do

ts[r] := 0;
sn[r] := 0;
v[r] := 0;

upon event 〈 oo-aregWrite | r, val 〉 do
ts[r] := ts[r] + 1;
trigger 〈 on-rregWrite | r, (ts[r],val) 〉;

upon event 〈 on-rregWriteReturn | r 〉 do
trigger 〈 oo-aregWriteReturn | r 〉;

upon event 〈 oo-aregRead | r 〉 do
trigger 〈 on-rregRead | r 〉;

upon event 〈 on-rregReadRet | r, (tstamp,val) 〉 do
if tstamp > sn[r] then

sn[r] := tstamp; v[r] := val;
trigger 〈 oo-aregReadReturn | r, v[r] 〉;

We now explain the steps underlying each (read or write) operation of a
single atomic register. To make the explanation clear, we refer to the atomic
register as atomicReg and to the underlying regular register as regularReg.

• To write a value v in the atomic register atomicReg, the writer p1 incre-
ments its timestamp and writes it, together with v in the underlying regular
register regularReg.

• To read a value in the atomic register atomicReg, the reader p2 reads the
value in the underlying regular register regularReg as well as the associated
timestamp. If the timestamp read is larger than the one previously locally
stored by the reader p2, then p2 writes the new timestamp, together with
the corresponding new value just read, and returns the latest. Otherwise,
the reader simply returns the value it had already locally stored.

Correctness. The termination property of the atomic register follows from
the one of the underlying regular register.

Consider validity. Assume first a read that is not concurrent with any
write, and the last value written by p1, say, v, is associated with timestamp
sn1. The timestamp stored by p2 is either sn1, if p2 has already read v in
some previous read, or a strictly lower value. In both cases, due to the validity

4.3 (1, N) Atomic Register 151

property of the regular register, a read by p2 will return v. Consider now the
case where the read is concurrent with some write of value v and timestamp
sn1, and the previous write was for value v′ and timestamp sn1 − 1. The
timestamp stored by p2 cannot be strictly larger than sn1. Hence, due to the
validity property of the underlying regular register, p2 will return either v or
v′; both are valid replies.

Consider now ordering. Assume p1 writes value v and then v′. Assume p2

returns v′ for some read and consider any subsequent read of p2. The times-
tamp stored locally at p2 is either the one associated with v′ or a larger one.
According to the transformation algorithm, there is no way p2 can return v.

Performance. Interestingly, writing in the atomic register requires only a
local computation (incrementing a timestamp) in addition to writing in the
regular register. Similarly, reading from the atomic register requires only
a local computation (performing a test and possibly some affectations) in
addition to reading from the regular register. This observation means that
no messages need to be added to an algorithm that implements a (1, 1) regular
register in order to implement an (1, N) atomic register.

From (1, 1) Atomic to (1, N) Atomic. We describe here an algorithm
that implements the abstraction of a (1, N) atomic register out of (1, 1)
atomic registers. To get an intuition of the transformation, think of a teacher,
i.e., the writer, who needs to communicate some information to a set of stu-
dents, i.e., the readers, through the abstraction of a traditional blackboard. In
some sense, a board is typically a (1, N) register, as long as only the teacher
writes on it. It is, furthermore, atomic as it is made of a single physical entity.

Assume, however, that the teacher cannot physically gather all students
within the same classroom, and hence cannot use one physical board for all.
Instead, this global board needs to be emulated using one or several electronic
boards (e-boards) that could also be written by one person but could only be
read by one person, say, every student can have one or several of such boards
at home that only he or she can read.

It makes sense to have the teacher write each new piece of information
on at least one e-board per student. This is intuitively necessary for the
students to eventually read the information provided by the teacher, i.e., to
ensure the validity property of the register. This is, however, not enough if
we want to guarantee the ordering property of an atomic register. Indeed,
assume that the teacher writes two consecutive pieces of information, X and
then Y . It might happen that a student reads Y and then, later on, some
other student reads X , say, because the information flow from the teacher to
the first student is faster than the flow to the second student. This case of
ordering violation is similar to the situation of Figure 4.4.

One way to cope with this issue is for every student, before terminating
the reading of some information, to transmit this information to all other
students, through other e-boards. That is, every student would use, besides
the e-board devoted to the teacher to provide new information, another one

152 4. Shared Memory

for the student to write new information on. Whenever a student reads some
information from the teacher, he or she first writes this information on the
e-boards of all other students before returning the information. Old and new
information are distinguished using timestamps.

The transformation we give in Algorithm 4.5–4.6 implements an array of
(1, N) atomic registers. The one considered in the algorithm is denoted by r.
The writer in r is p1, and the building of r makes use of a number of (1, 1)
atomic registers.

These (1, 1) registers are used in the following way:

1. A series of N (1, 1) atomic registers, with identities stored in variables
writer[r, 1], writer[r, 2], . . ., writer[r, N]. These registers are used to
communicate between the writer, i.e., p1, and each of the N readers.
In all these registers, the writer is p1. The reader of register writer[r, k]
is pk.

2. A series of N2 (1, 1) atomic registers, with identities stored in variables
readers[r, 1, 1], . . ., readers[r, i, j], . . . , readers[r, N, N]. These registers
are used to communicate between the readers. The register with identifier
readers[r, i, j] is used to inform reader pi about the last value read by
reader pj .

Algorithm 4.5–4.6 also relies on a timestamp ts that indicates the version
of the current value of the register. For presentation simplicity, we also make
use here of a function highest that returns the pair (timestamp, value) with
the largest timestamp in a set of such pairs.

Correctness. Due to the termination property of the underlying (1, 1) atomic
registers and the fact that the transformation algorithm contains no loop or
wait statement, every operation eventually returns.

Similarly, due the validity property of the underlying (1, 1) atomic regis-
ters, and the fact that the value with the largest timestamp is chosen to be
returned, we also derive the validity of the (1, N) atomic register.

Consider now the ordering property. Consider a write w1 of a value v1

with timestamp s1 that precedes a write w2 with value v2 and timestamp
s2 (s1 < s2) (in register r). Assume that some read operation returns v2:
According to the algorithm, for any j in [1, N], pi has written (s2, v2) in
readers [r, i, j]. Due to the ordering property of the underlying (1, 1) registers,
every subsequent read will return a value with a timestamp at least as large
as s2, i.e., there is no way to return v1.

Performance. Every write operation into the (1, N) register requires N writes
into (1, 1) registers. Every read from the (1, N) register requires one read from
N (1, 1) registers and one write into N (1, 1) registers.

We give, in the following, two ad hoc (1, N) atomic register algorithms.
The first one is a fail-stop and the second is a fail-silent algorithm. These
are adaptations of the “Read-One Write-All” and “Majority Voting” (1, N)

4.3 (1, N) Atomic Register 153

Algorithm 4.5 From (1, 1) Atomic to (1, N) Atomic Registers (write)

Implements:
(1, N)AtomicRegister (on-areg).

Uses:
(1, 1)AtomicRegister (oo-areg).

upon event 〈 Init 〉 do
i := rank (self); // rank of the process (integer in range 1 . . . N)
forall r do

ts[r] := 0;
acks[r] := 0;
readval[r] := 0;
readSet[r] := ∅;
reading[r] := true;
for j = 1 to N do // assign namespace of (1, 1) atomic registers

writer[r, j] := (r − 1)(N2 + N) + j;
for k = 1 to N do

readers[r, j, k] := (N2 + N)(r − 1) + jN + k;

upon event 〈 on-aregWrite | r, v 〉 do
ts[r] := ts[r] + 1;
reading[r]:= false;
for j = 1 to N do

trigger 〈 oo-aregWrite | writer[r,j], (ts[r], v) 〉;

upon event 〈 oo-aregWriteReturn | writer[r, j] 〉 do
acks[r] := acks[r] + 1;

upon exists r such that (acks[r] = N) ∧ ¬ reading[r] do
acks[r] := 0;
reading[r]:= true;
trigger 〈 on-aregWriteReturn | r 〉;

regular register algorithms, respectively. Both algorithms require fewer mes-
sages than we would obtain through the automatic transformations described
above.

4.3.3 Fail-Stop Algorithm: Read-Impose Write-All (1, N) Atomic
Register

If the goal is to implement a register with one writer and multiple readers, i.e.,
(1, N), the “Read-One Write-All” regular register algorithm (Algorithm 4.1)
clearly does not work: the scenario depicted in Figure 4.4 illustrates this case.

To cope with this case, we define an extension to the “Read-One Write-
All” regular register algorithm (Algorithm 4.1) that circumvents the problem
by having the reader also impose, on all other processes, the value it is about
to return. In other words, the read operation acts also as a write. The resulting

154 4. Shared Memory

Algorithm 4.6 From (1, 1) Atomic to (1, N) Atomic Registers (read)

upon event 〈 on-aregRead | r 〉 do
readSet[r] := ∅;
for j = 1 to N do

trigger 〈 oo-aregRead | readers[r, i, j] 〉;

upon event 〈 oo-aregReadReturn | readers[r, i, j], (tstamp, v) 〉 do
readSet[r] := readSet[r] ∪ {(tstamp, v)};

upon exists r such that |readSet[r]| = N) do
trigger 〈 oo-aregRead | writer[r, i] 〉;

upon event 〈 oo-aregReadReturn | writer[r, i], (tstamp, v) 〉 do
(maxts, readval[r]) := highest (readSet[r] ∪ {(tstamp, v)});
for j = 1 to N do

trigger 〈 oo-aregWrite | readers[r, j, i], (maxts, readval[r]) 〉;

upon event 〈 oo-aregWriteReturn | readers[r, j, i] 〉 do
acks[r] := acks[r] + 1;

upon exists r such that acks[r] = N ∧ reading[r] do
acks[r] := 0;
trigger 〈 on-aregReadReturn | r, readval[r] 〉;

algorithm (Algorithm 4.7–4.8) is named “Read-Impose Write-All”. The writer
uses a timestamp to date the values it is writing: it is this timestamp that
ensures the ordering property of every execution. A process that is asked to
store a value that is older than the one it has does not modify its value. We
will discuss the need for this test, as well as the need for the timestamp,
through an exercise (at the end of this chapter).

Correctness. Termination and validity are ensured as in our “Read-One
Write-All” algorithm (Algorithm 4.1). Consider now ordering. Assume p1

writes a value v and then v′, which is associated with some timestamp sn.
Assume, furthermore, that some reader pi reads v′ and, later on, some other
process pj invokes another read operation. At the time where pi completes
its read, all processes that did not crash have a timestamp that is at least as
large as sn. According to the “Read-One Impose-All” algorithm, there is no
way pj will later on change its value with v, as this has a smaller timestamp
because it was written by p1 before v′.

Performance. Every write or read operation requires two communication
steps, corresponding to the roundtrip communication between the writer or
the reader and all processes. At most 2N messages are needed in both cases.

4.3 (1, N) Atomic Register 155

Algorithm 4.7 Read-Impose Write-All (part I)

Implements:
(1, N)AtomicRegister (on-areg).

Uses:
BestEffortBroadcast (beb);
PerfectPointToPointLinks (pp2p);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
correct := Π ;
forall r do

v[r] := 0;
sn[r] := 0;
readval[r] := 0;
rqid[r] := 0;
reading[r] := false;
writeSet[r] := ∅;

upon event 〈 crash | pi 〉 do
correct := correct \ {pi};

upon event 〈 on-aregRead | r 〉 do
rqid[r] := rqid[r] + 1;
reading[r] := true;
readval[r] := v[r];
trigger 〈 bebBroadcast | [Write, r, reqid[r], sn[r], v[r]] 〉;

upon event 〈 on-aregWrite | r, val 〉 do
rqid[r] := rqid[r] + 1;
trigger 〈 bebBroadcast | [Write, r, reqid[r], sn[r] + 1, val] 〉;

4.3.4 Fail-Silent Algorithm: Read-Impose Write-Majority (1, N)
Atomic Register

In the following, we consider a fail-silent model. We describe an adaptation of
our “Majority Voting” (1, N) regular register algorithm (Algorithm 4.2–4.3)
to implement a (1, N) atomic register.

This adaptation, called “Read-Impose Write-Majority”, is depicted in Al-
gorithm 4.9–4.10. The implementation of the write operation is similar to
that of the “Majority Voting” algorithm (Algorithm 4.2–4.3): the writer sim-
ply makes sure a majority adopts its value. The implementation of the read
operation is however, different. A reader selects the value with the largest
timestamp frm a majority, as in the “Majority Voting” algorithm, but now
also imposes this value and makes sure a majority adopts it before complet-
ing the read operation: this is the key to ensuring the ordering property of
an atomic register.

156 4. Shared Memory

Algorithm 4.8 Read-Impose Write-All (part II)

upon event 〈 bebDeliver | pj ,[Write, r, id, tstamp, val] 〉 do
if tstamp > sn[r] then

v[r] := val;
sn[r] := tstamp;

trigger 〈 pp2pSend | pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver | pj , [Ack, r, id] 〉 do
if id = reqid[r] then

writeSet[r] := writeSet[r] ∪ {pj};

upon exists r such that correct ⊆ writeSet[r] do
writeSet[r] := ∅;
if (reading[r] = true) then

reading[r] := false;
trigger 〈 on-aregReadReturn | r, readval[r] 〉;

else
trigger 〈 on-aregWriteReturn | r 〉;

It is important to notice that the “Majority Voting” algorithm can be seen
as a particular case of the “Read-Impose Write-Majority” algorithm in the
following sense: given that there is only one reader in the “Majority Voting”
algorithm, the reader simply adopts the value read (i.e., imposes it on itself)
and makes sure to include itself in the majority.

Correctness. Termination and validity are ensured as in Algorithm 4.2–4.3
(“Majority Voting”). Consider now the ordering property. Assume that a read
invocation r1, by process pi, returns a value v1 from a write invocation w1,
by process p1 (the only writer); a read invocation r2, by process pj, returns
a different value v2 from a write invocation w1, also by process p1; and r1

precedes r2. Assume by contradiction that w2 precedes w1. According to the
algorithm, the sequence number that p1 associated with v1, tsk, is strictly
larger than the one p1 associated with v2, tsk′ . Given that r1 precedes r2,
when r2 was invoked, a majority has a timestamp that is at least tsk′ . Hence
pj cannot return v2, because v2 has a strictly smaller sequence number than
v1. A contradiction.

Performance. Every write operation requires two communication steps cor-
responding to one roundtrip exchange between p1 and a majority of the pro-
cesses. 2N messages are exchanged. Every read requires four communication
steps corresponding to two roundtrip exchanges between the reader and a
majority of the processes. 4N messages are exchanged.

4.4 (N, N) Atomic Register 157

Algorithm 4.9 Read-Impose Write-Majority (part I)

Implements:
(1, N)AtomicRegister (on-areg).

Uses:
BestEffortBroadcast (beb); PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
forall r do

sn[r] := 0;
v[r] := 0;
acks[r] := 0;
reqid[r] := 0;
readval [r] := 0;
reading[r] := false;
readSet[r] := ∅;

upon event 〈 on-aregWrite | r, val 〉 do
reqid[r] := reqid[r] + 1;
sn[r] := sn[r] + 1;
v[r] := val;
acks[r] := 1;
trigger 〈 bebBroadcast | [Write, r, reqid, sn[r], val] 〉;

upon event 〈 bebDeliver | pj , [Write, r, id, t, val] 〉 do
if t > sn[r] then

sn[r]:= t; v[r] := val;
trigger 〈 pp2pSend | pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver | pj , [Ack, r, id] 〉 do
if reqid[r] = id then

acks[r] := acks[r] + 1;

4.4 (N, N) Atomic Register

4.4.1 Multiple Writers

So far, we have focused on registers with a single writer. That is, our specifi-
cations of regular and atomic registers do not provide any guarantees when
multiple processes write in a register. It is natural to ask what should be
ensured in the case of multiple writers.

One difficulty underlying this question has to do with defining the validity
property in the case of multiple writers. Indeed, this property requires that a
read that is not concurrent with any write should return the last value written.
But if two processes have written different values concurrently, say, v and v′,
before some other process invokes a read operation, then what should this
read return? Assuming we make it possible for the reader to return either v
or v′, do we allow a concurrent reader, or even a reader that comes later, to

158 4. Shared Memory

Algorithm 4.10 Read-Impose Write-Majority (part II)

upon exists r such that acks[r] > N/2 do
if reading[r] = true then

reading[r] := false;
trigger 〈 on-aregReadReturn | r, readval[r] 〉;

else
trigger 〈 on-aregWriteReturn | r 〉;

upon event 〈 on-aregRead | r 〉 do
reqid[r] := reqid[r] + 1;
readSet[r] := ∅;
trigger 〈 bebBroadcast | [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver | pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend | pj , [ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 pp2pDeliver | pj , [ReadValue, r, id, ts, val] 〉 do
if reqid[r] = id then

readSet[r] := readSet[r] ∪ { (ts, val) };

upon exists r such that |readSet[r]| > N/2 do
(tstamp,readval[r]) := highest(readSet[r]);
acks[r] := 0;
reading[r] := true;
trigger 〈 bebBroadcast | [Write, r, reqid[r], tstamp, readval[r]] 〉;

return the other value? What about a failed write? If a process writes a value
v and crashes before completing the write, does a reader need to return v or
can it return an older value?

In the following, we address these questions and generalize the specifica-
tion of atomic registers to multiple writers.

4.4.2 Specification

In short, an (N, N) atomic register ensures that failed writes appear either as
if they were never invoked or if they were complete, i.e., as if they were invoked
and terminated. (Clearly, failed read operations do always appear as if they
were never invoked.) In addition, even in the face of concurrency, the values
returned by reads could have been returned by a serial execution (called a
linearization of the actual execution), where any operation takes place at
some instant between its invocation and reply instants. The execution is in
this sense linearizable, i.e., there is a way to linearize it.

A (N, N) atomic register is a generalization of a (1, N) atomic register in
the following sense: every execution of a (1, N) atomic register is an execution
of an (N, N) atomic register. The interface and properties of an (N, N) atomic
register are given in Module 4.3.

4.4 (N, N) Atomic Register 159

Module 4.3 Interface and properties of an (N, N) atomic register

Module:

Name: (N, N)AtomicRegister (nn-areg).

Events:

Same as for a regular register (just replace “on-” by “nn-” on the interface).

Properties:

NAR1: Termination: Same as RR1.

NAR2: Atomicity: Every failed operation appears to be complete or does
not appear to have been invoked at all, and every complete operation
appears to have been executed at some instant between its invocation and
the corresponding confirmation event.

To study the implementation of (N, N) atomic registers, we adopt the
same modular approach as for the (1, N) case. We first describe a gen-
eral transformation that implements an (N, N) atomic register using (1, N)
atomic registers. This transformation does not rely on any other way of ex-
changing information among the processes, besides the underlying (1, N)
atomic registers. This helps understand the fundamental difference between
both abstractions. We will also study ad hoc and efficient (N, N) atomic
register algorithms in various models.

4.4.3 Transformation: From (1, N) Atomic to (N, N) Atomic
Registers

To get an intuition of this transformation, think of emulating a general
(atomic) blackboard to be used by a set of teachers to provide information to
a set of students. Teachers would like to be able to write and read informa-
tion on a single common board. However, what is available are simply boards
where only one teacher can write information. If every teacher uses his or her
own board to write information, then it will not be clear for a student which
information to select and still ensure the atomicity of the common board,
i.e., the illusion of one physical common board that all teachers share. The
difficulty is actually for any given student to select the latest information
written. Indeed, if some teacher A writes X and then some other teacher
B later writes Y , then a student that comes afterward should read Y . But
how can the student know that Y is indeed the latest information, given that
what is available are simply individual boards, one for each teacher?

This can in fact be ensured by having the teachers coordinate their writing
to create a causal precedence among the information they write. Teacher B
that writes Y could actually read the board of teacher A and, when finding
X , associate with Y some global timestamp that denotes the very fact that Y
is indeed more recent than X . This is the key to the transformation algorithm
we present below.

160 4. Shared Memory

The transformation algorithm (Algorithm 4.11), implements an array of
(N, N) atomic registers. Each register, denoted by r, uses N (1, N) atomic
registers, whose identities are stored in variables writer[r, 1], . . ., writer[r, N].
Every register writer[r, i] contains a value and an associated timestamp. Ba-
sically, to write a value v in r, process pj reads all (1, N) registers and selects
the largest timestamp, which it increments and associates with the value v
to be written. Then pj writes in writer[r, j] the value with the associated
timestamp.

To read a value from r, process pj reads all registers from writer[r, 1] to
writer[r, N], and returns the value with the largest timestamp. To distinguish
values that are associated with the same timestamp, pj uses the identity
of the processes that have originally written those values and order them
accordingly, i.e., pj uses the indices of the registers from which it has read
these timestamps. We define in this way a total order among the timestamps
associated with the values, and we abstract away this order within a function
highest-ts that returns the timestamp with the highest order. We also make
use of a similar function, called highest-val, but with a different signature,
that returns the value with the largest timestamp, from a set of triplets
(timestamp, value, process identity).

Correctness. The termination property of the (N, N) register follows from
that of the (1, N) register, whereas atomicity follows from the total order
used to write values: this order respects the real-time order of the operations.

Performance. Every write operation into the (N, N) atomic register requires
N reads from each of the (1, N) registers and one write into a (1, N) register.
Every read from the (N, N) register requires N reads from each of the (1, N)
registers.

1. Assume we apply the transformation of Algorithm 4.11 to the “Read-One
Impose-All” fail-stop algorithm (Algorithm 4.7–4.8) in order to obtain an
(N, N) atomic register algorithm. Every read in the (N, N) register would
involve N (parallel) communication roundtrips between the reader and
all other processes. Furthermore, every write operation in the (N, N)
register would involve N (parallel) communication roundtrips between
the writer and all other processes (to determine the largest timestamp),
and then another communication roundtrip between the writer and all
other processes (to perform the actual writing).

2. Similarly, assume we apply the transformation of Algorithm 4.11 to
“Read-Majority Impose-Majority” algorithm (Algorithm 4.9–4.10) in or-
der to obtain a (N, N) atomic register algorithm. Every read in the
(N, N) register would involve N communication roundtrips between the
reader and a majority of the processes (to determine the latest value),
and then N other communication roundtrips between the reader and
a majority of the processes (to impose that value). Furthermore, every
write operation in the (N, N) register would involve N parallel commu-
nication roundtrips between the writer and a majority (to determine the

4.4 (N, N) Atomic Register 161

Algorithm 4.11 From (1, N) Atomic to (N, N) Atomic Registers

Implements:
(N, N)AtomicRegister (nn-areg).

Uses:
(1, N)AtomicRegisters(o-areg).

upon event 〈 Init 〉 do
i := rank (self); // rank of the process (integer in range 1 . . . N)
forall r do

writeval[r] := 0;
writing[r] := false;
readSet[r] := ∅;
for j = 1 to N do // assign namespace of (1, N) atomic registers

writer[r, j] := (r − 1)N + j;

upon event 〈 nn-aregWrite | r, v 〉 do
writeval[r] := v;
writing[r] := true;
readSet[r] := ∅;
for j = 1 to N do

trigger 〈 on-aregRead | writer[r,j] 〉;

upon event 〈 nn-aregRead | r 〉 do
readSet[r] := ∅;
for j = 1 to N do

trigger 〈 on-aregRead | writer[r,j] 〉;

upon event 〈 on-aregReadReturn | writer[r,j], (tstamp,val) 〉 do
readSet[r] := readSet[r] ∪ { (tstamp, val) };

upon exists r such that |readSet[r]| = N do
(t, v) := highest (readSet[r]);
if writing[r] then

writing[r] := false;
trigger 〈 on-aregWrite | writer[r,i], (t+1, writeval[r]) 〉;

else
trigger 〈 nn-aregReadReturn | r, v 〉;

upon event 〈 on-aregWriteReturn | writer[r,i] 〉 do
trigger 〈 nn-aregWriteReturn | r 〉;

largest timestamp) and then another communication roundtrip between
the writer and a majority (to perform the actual writing).

We present, in the following, ad hoc algorithms that are more efficient
than the algorithms we obtain through the automatic transformations. We
describe first a fail-stop algorithm and then a fail-silent algorithm.

162 4. Shared Memory

4.4.4 Fail-Stop Algorithm: Read-Impose Write-Consult (N, N)
Atomic Register

We describe below an adaptation of our (1, N) “Read-Impose Write-All” algo-
rithm (Algorithm 4.7–4.8) to deal with multiple writers. To get an idea of the
issue introduced by multiple writers, it is important to first figure out why the
“Read-One Impose-All” algorithm cannot afford multiple writers. Consider
indeed the case of two processes trying to write in a register implemented
using the “Read-Impose Write-All” algorithm: say, processes p1 and p2. Dif-
ferent values would be associated with the same timestamp. To address this
issue, the idea is to use the identity of the processes in the comparison, i.e.,
use the lexicographical order. (The idea of making use of process identities
in the comparisons was also key in our transformation from (1, N) to (N, N)
atomic.) The resulting algorithm, called “Read-Impose Write-Consult” (Al-
gorithm 4.12–4.13), is an extension of “Read-Impose Write-All” algorithm
(Algorithm 4.7–4.8) that implements a (N, N) atomic register.

Correctness. The termination property of the register follows from the com-
pleteness property of the failure detector and the underlying channels. The
atomicity property follows from the accuracy property of the failure detector.

Performance. Every read in the (N, N) register requires four communication
steps: 4N messages are exchanged. Every write requires two communication
steps: 2N messages are exchanged.

4.4.5 Fail-Silent Algorithm: Read-Impose Write-Consult-Majority
(N, N) Atomic Register

We describe here how to obtain an algorithm that implements an (N, N)
atomic register in a fail-silent model as an extension of our “Read-Impose
Write-Majority” algorithm, i.e., Algorithm 4.9–4.10, that implements a (1, N)
atomic register. Let us first discuss the issue of multiple writers in Algo-
rithm 4.9–4.10. Consider the case where a process p1 makes a long sequence
of write operations. Further, assume that some other process p2 is never in-
cluded in the majority required to complete those operations. When process
p2 tries to write using its local timestamp, its write operation will fail be-
cause its timestamp will be considered smaller than the current value by
those processes involved in the majority required to terminate p1’s write op-
erations. Intuitively, the problem is that now the timestamps are generated
independently by each processes, something that did not happen with a sin-
gle writer. What we actually expect from the timestamps is that (a) they
be totally ordered, and (b) they reflect the precedence relation between op-
erations. They should not be generated independently by multiple writers,
but should in our example reflect the fact that the writing of Y precedes
the writing of Z. In the case of multiple writers, we have to deal with the
problem of how to determine a timestamp in a distributed fashion. The idea

4.4 (N, N) Atomic Register 163

Algorithm 4.12 Read-Impose Write-Consult (part I)

Implements:
(N, N)AtomicRegister (nn-areg).

Uses:
BestEffortBroadcast (beb);
PerfectPointToPointLinks (pp2p);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
correct := Π ;
i := rank (self);
forall r do

writeSet[r] := ∅;
reading[r] := false;
reqid[r] := 0;
readval[r] := 0;
v[r] := 0;
ts[r] := 0;
mrank[r] := 0;

upon event 〈 crash | pi 〉 do
correct := correct \ {pi};

upon event 〈 nn-aRegRead | r 〉 do
reqid[r] := reqid[r]+1;
reading[r] := true;
writeSet[r] := ∅;
readval[r] := v[r];
trigger 〈 bebBroadcast | [Write, r, reqid[r], (ts[r], mrank[r]), v[r]] 〉;

upon event 〈 nn-aRegWrite | r, val 〉 do
reqid[r] := reqid[r]+1;
writeSet[r] := ∅;
trigger 〈 bebBroadcast | [Write, r, reqid[r], (ts[r] + 1, i), val] 〉;

is to have every writer consult first other writers to collect their timestamps,
and then to determine its timestamp by choosing the largest, i.e., we add one
communication roundtrip between the writer and all processes (that did not
crash). (The idea of consulting other writers is also key to our transformation
above from (1, N) to (N, N) atomic.)

We describe in Algorithm 4.144.15 the events that need to be modified
or added to Algorithm 4.9–4.10 (“Read-Impose Write-Majority”) in order to
deal with multiple writers. More precisely, the read procedure of our (N, N)
atomic register algorithm (“Read-Impose Write-Consult-Majority”) is similar
to that of Algorithm 4.9–4.10. The write procedure is different in that the
writer first determines a timestamp to associate with the new value to be
written by reading a majority of the processes. It is also important to notice

164 4. Shared Memory

Algorithm 4.13 Read-Impose Write-Consult (part II)

upon event 〈 bebDeliver | pj ,[Write, r, id, (t,j), val] 〉 do
if (t,j) > (ts[r], mrank[r]) then

v[r] := val;
ts[r] := t;
mrank[r] := j;

trigger 〈 pp2pSend | pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver | pj , [Ack, r, id] 〉 do
if id = reqid[r] then

writeSet[r] := writeSet[r] ∪ {pj};

upon exists r such that correct ⊆ writeSet[r] do
writeSet[r] := ∅;
if (reading[r] = true) then

reading[r] := false;
trigger 〈 nn-aregReadReturn | r, readval[r] 〉;

else
trigger 〈 nn-aregWriteReturn | r 〉;

that the processes distinguish values with the same timestamps using process
identifiers. We assume that every value written is tagged with the identity
of the originator process. A value v is considered more recent than a value
v′ if v has a strictly larger timestamp, or v and v′ have the same timestamp
and v was written by pi whereas v′ was written by pj such that i > j. As in
previous algorithms, we use a function highest-ts that returns the timestamp
with the largest order and a similar function, called highest-val, that returns
the value with the largest timestamp.

Correctness. The termination property of the register follows from the correct
majority assumption and the underlying channels. The atomicity property
follows from the quorum property of the majority.

Performance. Every read or write in the (N, N) register requires four commu-
nication steps corresponding to two roundtrip exchanges between the reader
or the writer and a majority of the processes. In each case, at most 4N
messages are exchanged.

4.5 (1, N) Logged Regular Register

So far, we considered register specifications and implementations under the
assumption that processes that crash do not recover. In other words, processes
that crash, even if they recover, are excluded from the computation: they
can neither read nor write in a register. Furthermore, they cannot help other
processes reading or writing by storing and witnessing values. We revisit here
this assumption and take into account processes that recover after crashing.

4.5 (1, N) Logged Regular Register 165

Algorithm 4.14 Read-Impose Write-Consult-Majority (part I)

Implements:
(N, N)AtomicRegister (nn-areg).

Uses:
BestEffortBroadcast (beb);
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
i := rank (self);
forall r do

writeSet[r] := ∅;
readSet[r] := ∅;
reading[r] := false;
reqid[r] := 0;
v[r] := 0;
ts[r] := 0;
mrank[r] := 0;

upon event 〈 nn-aregRead | r 〉 do
reqid[r] := reqid[r] + 1;
reading[r] := true;
readSet[r] := ∅;
writeSet[r] := ∅;
trigger 〈 bebBroadcast | [Read, r, reqid[r]] 〉;

upon event 〈 nn-aregWrite | r, val 〉 do
reqid[r] := reqid[r] + 1;
writeval[r] := val;
readSet[r] := ∅;
writeSet[r] := ∅;
trigger 〈 bebBroadcast | [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver | pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend | pj , [ReadValue, r, id, (ts[r], mrank[r]), v[r]] 〉;

upon event 〈 pp2pDeliver | pj , [ReadValue, r, id, (t,rk), val] 〉 do
if id = reqid[r] then

readSet[r] := readSet[r] ∪ {((t, rk), val)};

That is, we give register specifications and algorithms that implement these
specifications in the fail-recovery model.

4.5.1 Precedence in the Fail-Recovery Model

To define register semantics in a fail-recovery model, we first revisit the no-
tion of precedence introduced earlier, assuming, by default, fail-no-recovery
models.

166 4. Shared Memory

Algorithm 4.15 Read-Impose Write-Consult-Majority (part II)

upon exists r such that |readSet[r]| > N/2 do
((t,rk), v) := highest (readSet[r]);
readval[r] := v;
if reading[r] then

trigger 〈 bebBroadcast | [Write, r, reqid[r], (t,rk), readval[r]] 〉;
else

trigger 〈 bebBroadcast | [Write, r, reqid[r], (t+1,i), writeval[r]] 〉;

upon event 〈 bebDeliver | pj ,[Write, r, id, (t,j), val] 〉 do
if (t,j) > (ts[r], mrank[r]) then

v[r] := val;
ts[r] := t;
mrank[r] := j;

trigger 〈 pp2pSend | pj , [Ack, r, id] 〉;

upon event 〈 pp2pDeliver | pj , [Ack, r, id] 〉 do
if id = reqid[r] then

writeSet[r] := writeSet[r] ∪ {pj};

upon exists r such that |writeSet[r]| > N/2 do
if (reading[r] = true) then

reading[r] := false;
trigger 〈 nn-aregReadReturn | r, readval[r] 〉;

else
trigger 〈 nn-aregWriteReturn | r 〉;

• We say that an operation op1 (e.g., read or write) precedes an operation
op2 (e.g., read or write) if any of the following two conditions hold.

1. the event corresponding to the return of op1 occurs before (i.e., precedes)
the event corresponding to the invocation of op2;

2. the operations are invoked by the same process and the event corre-
sponding to the invocation of op2 occurs after the event corresponding
to the invocation of op1.

It is important to note here that, for an operation op1, invoked by some
process p1 to precede an operation op2 invoked by the same process, op1
does not need to be complete. In this case, a process might have invoked
op1, crashed, recovered, and invoked op2. This was clearly not possible in a
crash-no-recovery model.

4.5.2 Specification

The interface and properties of a (1, N) regular register in a fail-recovery
model, called a logged register here, are given in Module 4.4. Logged atomic
registers ((1, N) and (N, N)) can be specified accordingly.

4.5 (1, N) Logged Regular Register 167

Module 4.4 Interface and properties of a (1, N) logged regular register

Module:

Name: (1, N)LoggedRegularRegister (on-log-rreg).

Events:

Request: 〈 on-log-rregRead | reg 〉: Used to invoke a read operation on
register reg.

Request: 〈 on-log-rregWrite | reg, v 〉: Used to invoke a write operation
of value v on register reg.

Confirmation: 〈 on-log-rregReadReturn | reg, v 〉: Used to return v as
a response to the read invocation on register reg and confirms that the
operation is complete.

Confirmation: 〈 on-log-rregWriteReturn | reg 〉: Confirms that the write
operation is complete.

Properties:

LRR1: Termination: If a process invokes an operation and does not crash,,
the process eventually receives the corresponding confirmation.

LRR2: Validity: A read returns the last value written, or the value con-
currently written.

The termination property is similar to what we considered before, though
expressed here in a different manner. Indeed the notion of correctness used
in earlier register specifications has a different meaning here. It does not
make much sense to require that a process that invokes some operation,
that crashes, and then recovers, still gets back a reply to the operation. Our
termination property requires, however, that if a process invokes an operation
and does not crash, it eventually gets a reply.

On the other hand, the validity property is expressed as in earlier specifi-
cations, but now has a different meaning. Assume the writer p1 crashes before
completing the writing of some value X (no write was invoked before), then
recovers and invokes the writing of value Y . Assume that p2 concurrently
invokes a read operation on the same register. It is valid that this read oper-
ation returns 0: value X is not considered to have been written. Now assume
that p2 invokes another read operation that is still concurrent with the writ-
ing of Y . It is no longer valid for p2 to return X . In other words, there is only
one last value written before Y : this can be either 0 or X , but not both.

4.5.3 Fail-Recovery Algorithm: Logged-Majority-Voting

Considering a fail-recovery model where all processes can crash, it is easy
to see that even a (1, 1) regular register algorithm cannot be implemented
unless the processes have access to stable storage and a majority is correct.
We thus make the following assumptions.

168 4. Shared Memory

1. Every process has access to a local stable storage. This is supposed to be
accessible through the primitives store, which atomically logs information
in the stable storage, and retrieve, which gets back that information from
the storage. Information that is logged in the stable storage is not lost
after a crash.

2. A majority of the processes are correct. Remember that a correct process
in a fail-recovery model is one that either never crashes, or eventually
recovers and never crashes again.

Intuitively, we might consider transforming our “Majority Voting” regular
register algorithm (i.e., Algorithm 4.2–4.3) to deal with process crashes and
recoveries simply by logging every new value of any local variable to stable
storage upon modification of that variable, and then retrieving all variables
upon recovery. This would include messages to be delivered, i.e., the act of
delivering a message would coincide with the act of storing it in stable storage.
However, as we discussed earlier in this book, one should be careful with such
an automatic transformation because access to stable storage is an expensive
operation and should only be used when necessary.

In particular, we describe an algorithm (Algorithm 4.16–4.17), called
“Logged Majority Voting” algorithm, that implements an array of (1, N)
logged regular registers. The algorithm logs the variables that are persistent
across invocations (e.g., the value of the register at a given process and the
associated timestamp), in one atomic operation, and retrieves these variables
upon recovery. We discuss the need of logging atomicity through an exercise
(at the end of the chapter).

The algorithm makes use of stubborn communication channels and stub-
born broadcast communication abstractions. Remember that stubborn com-
munication primitives ensure that, roughly speaking, if a message is sent to a
correct process (in the fail-recovery sense), the message is delivered an infinite
number of times, unless the sender crashes. This ensures that the process,
even if it crashes and recovers a finite number of times, will eventually process
every message sent to it.

Note that, upon recovery, every process first executes its initialization
procedure and then its recovery one. Note also that we do not log the vari-
ables that are only persistent across events, e.g., the variable that counts the
number of acknowledgments that a writer has received. The communication
pattern of Algorithm 4.16–4.17 is similar to the one of the “Majority Voting”
algorithm that implements a regular register for the fail-silent model (Al-
gorithm 4.2–4.3). What we, furthermore, add here are logs. For every write
operation, the writer logs the new timestamp and the value to be written,
and then a majority of the processes logs the new value with its timestamp.

Correctness. The termination property follows from the properties of the
underlying stubborn communication abstractions and the assumption of a
majority of the correct processes.

4.5 (1, N) Logged Regular Register 169

Algorithm 4.16 Logged Majority Voting (init/recovery)

Implements:
(1, N)LoggedRegularRegister (on-logrreg)

Uses:
StubbornBestEffortBroadcast (sbeb);
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
forall r do

sn[r] := 0;
v[r] := 0;
acks[r] := 0;
reqid[r] := 0;
readSet[r] := ∅;
writing[r] = false;

upon event 〈 Recovery 〉 do
retrieve (reqid, sn, v, writing);
forall r do

if writing[r] = true then
acks[r] := 0;
reqid[r] := reqid[r] + 1;
trigger 〈 sbebBroadcast | [Write, r, reqid[r], ts[r], v[r]] 〉;

Consider now validity. Consider first the case of a read that is not con-
current with any write. Assume, furthermore, that a read is invoked by some
process pi and the last value written by p1, say, v, has timestamp sn1 at p1.
Because the writer logs every timestamp and increments the timestamp for
every write, at the time when the read is invoked, a majority of the processes
have logged v and timestamp sn1 and there is no larger timestamp in the
system. Before reading a value, i.e., returning from the read operation, pi

consults a majority of the processes and hence gets at least one value with
timestamp sn1. Process pi hence returns value v with timestamp sn1, which
is indeed the last value written.

Consider now the case where the read is concurrent with some write of
value v and timestamp sn1, and the previous write was value v′ and times-
tamp sn1−1. If the latter write had failed before p1 logged v′ then no process
will ever see v′. Otherwise, p1 would have first completed the writing of v′

upon recovery. If any process returns sn1 to pi, pi will return v, which is a
valid reply. Otherwise, at least one process will return sn1 − 1 and pi will
return v′, which is also a valid reply.

Performance. Every write operation requires two communication steps be-
tween p1 and a majority of the processes. Similarly, every read requires two
communication steps between the reader process and a majority of the pro-
cesses. In both cases, at most 2N messages are exchanged. Every write re-

170 4. Shared Memory

Algorithm 4.17 Logged Majority Voting (read/write)

upon event 〈 on-logrregWrite | r, val 〉 ∧ ¬writing[r] do
sn[r] := sn[r] + 1;
v[r] := val;
acks[r] := 1;
reqid[r] := reqid[r] + 1;
writing[r] := true;
store (sn[r], reqid[r], v[r], writing[r]);
trigger 〈 sbebBroadcast | [Write, r, reqid[r], ts[r], v[r]] 〉;

upon event 〈 sbebDeliver | pj , [Write, r, id, t, val] 〉 do
if t > sn[r] then

v[r] := val;
sn[r] := t;
store(sn[r], v[r]);

trigger 〈 sbp2pSend | pj , [Ack, r, id] 〉;

upon event 〈 sbp2pDeliver | pj , [Ack, r, id] 〉 do
if id = reqid[r] then

acks[r] := acks[r]+1;

upon exists r such that acks[r] > N/2 do
writing[r] = false;
store(writing[r]);
〈 on-logrregWriteReturn | r 〉;

upon event 〈 on-logrregRead | r 〉 do
reqid[r] := reqid[r]+1;
readSet[r] := ∅;
trigger 〈 sbebBroadcast | [Read, r, id] 〉;

upon event 〈 sbebDeliver | pj , [Read, r, id] 〉 do
trigger 〈 sp2pSend | pj ,[ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 sp2pDeliver | pj , [ReadValue, r, id, snb, val] 〉 do
if id = reqid[r] then

readSet[r] := readSet[r] ∪ { (snb, val) };

upon exists r such that | readSet[r]| > N/2 do
(ts, v) := highest(readSet[r]);
v[r] := v;
sn[r] := ts;
trigger 〈 on-logrregReadReturn | r, v 〉;

quires one log at p1, and then at least a majority of logs (possibly parallel
ones). Thus, every write requires two causally related logs.

It is important to note that stubborn channels are implemented by re-
transmitting messages periodically, and this retransmission can be stopped
by a writer and a reader that receives a reply of some process or receives
enough replies to complete its operation.

4.6 Hands-On 171

Interestingly, Algorithm 4.9–4.10 (“Read-Impose Write-Majority”) and
Algorithm 4.14–4.15 (“Read-Impose Write-Consult-Majority”) can easily be
adapted to implement, respectively, a (1, N) and an (N, N) atomic registers
in a fail-recovery model, pretty much like “Logged Majority Voting” extends
“Majority Voting.”

4.6 Hands-On

4.6.1 (1, N) Regular Register

The (1, N) Regular Register algorithm implemented was the “Read-One
Write-All.” The communication stack used to implement this protocol is the
following:

Application
(1, N)RegularRegister

(implemented by Read-One Write-All)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

This implementation uses two different Appia channels because the algo-
rithm uses the best-effort broadcast (which in turn is based on perfect point-to-
point links) also the perfect point-to-point links directly (without best-effort
reliability).

The protocol implementation is depicted in Listing 4.1. It follows Algo-
rithm 4.1 very closely. The only significant difference is that values are generic
instead of integers, thus allowing registers to contain strings.

Listing 4.1. Read-One Write-All (1, N) Regular Register implementation

package appia.protocols.tutorialDA.readOneWriteAll1NRR;

public class ReadOneWriteAll1NRRSession extends Session {
public static final int NUM REGISTERS=20;

public ReadOneWriteAll1NRRSession(Layer layer) {
super(layer);

}

private Object[] value=new Object[NUM REGISTERS];
private HashSet[] writeSet=new HashSet[NUM REGISTERS];
private ProcessSet correct=null;

private Channel mainchannel=null;
private Channel pp2pchannel=null;
private Channel pp2pinit=null;

172 4. Shared Memory

public void handle(Event event) {
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit)event);
else if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)event);
else if (event instanceof Crash)

handleCrash((Crash)event);
else if (event instanceof SharedRead)

handleSharedRead((SharedRead)event);
else if (event instanceof SharedWrite)

handleSharedWrite((SharedWrite)event);
else if (event instanceof WriteEvent)

handleWriteEvent((WriteEvent)event);
else if (event instanceof AckEvent)

handleAckEvent((AckEvent)event);
else {

event.go();
}

}

public void pp2pchannel(Channel c) {
pp2pinit=c;

}

private void handleChannelInit(ChannelInit init) {
if (mainchannel == null) {

mainchannel=init.getChannel();
pp2pinit. start ();

} else {
if (init .getChannel() == pp2pinit) {

pp2pchannel=init.getChannel();
}

}

init .go();
}

private void handleProcessInit(ProcessInitEvent event) {
correct=event.getProcessSet();
init ();
event.go();

}

private void init() {
int i ;
for (i=0 ; i < NUM REGISTERS ; i++) {

value[i]=null;
writeSet[i]=new HashSet();

}
}

private void handleCrash(Crash event) {
correct .setCorrect(event.getCrashedProcess(), false);
event.go();

allCorrect ();
}

private void handleSharedRead(SharedRead event) {
SharedReadReturn ev=new SharedReadReturn(mainchannel, Direction.UP, this);
ev.reg=event.reg;
ev.value=value[event.reg];
ev.go();

}

private void handleSharedWrite(SharedWrite event) {

4.6 Hands-On 173

WriteEvent ev=new WriteEvent(mainchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushObject(event.value);
ev.getExtendedMessage().pushInt(event.reg);
ev.go();

}

private void handleWriteEvent(WriteEvent event) {
int reg=event.getExtendedMessage().popInt();
Object val=event.getExtendedMessage().popObject();

value[reg]=val;

AckEvent ev=new AckEvent(pp2pchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushInt(reg);
ev.dest=event.source;
ev.go();

}

private void handleAckEvent(AckEvent event) {
SampleProcess p j=correct.getProcess((InetWithPort)event.source);
int reg=event.getExtendedMessage().popInt();

writeSet[reg]. add(p j);

allCorrect ();
}

private void allCorrect() {
int reg;
for (reg=0 ; reg < NUM REGISTERS ; reg++) {

boolean allAcks=true;
int i ;
for (i=0 ; (i < correct.getSize()) && allAcks ; i++) {

SampleProcess p=correct.getProcess(i);
if (p.isCorrect() && !writeSet[reg]. contains(p))

allAcks=false;
}
if (allAcks) {

writeSet[reg]. clear ();

SharedWriteReturn ev=new SharedWriteReturn(mainchannel, Direction.UP, this);
ev.reg=reg;
ev.go();

}
}

}
}

Try It

1. Setup
a) Open three shells/command prompts.
b) In each shell go to the directory where you have placed the supplied

code.
c) In each shell launch the test application, SampleAppl, giving a dif-

ferent n value (0, 1, or 2) and specifying the qos as r1nr.
• In shell 0, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

174 4. Shared Memory

-n 0 \

-qos r1nr

• In shell 1, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

-qos r1nr

• In shell 2, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs

-n 2 \

-qos r1nr

d) If the error NoClassDefError has appeared, confirm that you are at
the root of the supplied code.

e) Start the prefect failure detector by writing startpfd in each shell.
2. Run: Now that processes are launched and running, let us try the follow-

ing execution:
a) In shell 0, write the value S1 to register 2 (type write 2 S1 and

press Enter).
b) In shell 1, read the value stored in register 2 (type read 2 and press

enter).
• The shell displays that the value S1 is stored in register 2.

c) In shell 0, write the value S2 to register 5 (type write 5 S2 and
press Enter).

d) In shell 1, write the value S5 to register 5 (type write 5 S5 and
press Enter).

e) In shell 0, read the value stored in register 5 (type read 5 and press
Enter).
• Despite the fact that process 0 has written the value S2, the dis-

played content of register 5 is S5 because process 1 has afterward
written to that register, .

4.6.2 (1, N) Atomic Register

The (1, N) Atomic Register algorithm implemented was the Read-Impose
Write-All. The communication stack used to implement this protocol is the
following:

4.6 Hands-On 175

Application
(1, N)AtomicRegister

(implemented by Read-Impose Write-All)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The protocol implementation is depicted in Listing 4.2. It follows the
Algorithm 4.7–4.8 very closely. The only significant difference is that values
are again generic instead of integers, thus allowing the registers to contain
strings.

Listing 4.2. Read-Impose Write-All (1, N) Atomic Register implementation

package appia.protocols.tutorialDA.readImposeWriteAll1NAR;

public class ReadImposeWriteAll1NARSession extends Session {
public static final int NUM REGISTERS = 20;

public ReadImposeWriteAll1NARSession(Layer layer) {
super(layer);

}

private Object[] v = new Object[NUM REGISTERS];
private int [] ts = new int[NUM REGISTERS];
private int [] sn = new int[NUM REGISTERS];
private Object[] readval = new Object[NUM REGISTERS];
private int [] rqid = new int[NUM REGISTERS];
private boolean[] reading = new boolean[NUM REGISTERS];
private HashSet[] writeSet = new HashSet[NUM REGISTERS];
private ProcessSet correct = null;
private Channel mainchannel = null;
private Channel pp2pchannel = null;
private Channel pp2pinit = null;

public void handle(Event event) {
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit) event);
else if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent) event);
else if (event instanceof Crash)

handleCrash((Crash) event);
else if (event instanceof SharedRead)

handleSharedRead((SharedRead) event);
else if (event instanceof SharedWrite)

handleSharedWrite((SharedWrite) event);
else if (event instanceof WriteEvent)

handleWriteEvent((WriteEvent) event);
else if (event instanceof AckEvent)

handleAckEvent((AckEvent) event);
else {

event.go();
}

}

public void pp2pchannel(Channel c) {
pp2pinit = c;

}

176 4. Shared Memory

private void handleChannelInit(ChannelInit init) {
if (mainchannel == null) {

mainchannel = init.getChannel();
pp2pinit. start ();

} else {
if (init .getChannel() == pp2pinit) {

pp2pchannel = init.getChannel();
}

}

init .go();
}

private void handleProcessInit(ProcessInitEvent event) {
correct = event.getProcessSet();
init ();
event.go();

}

private void init() {
int r ;
for (r = 0; r < NUM REGISTERS; r++) {

v[r] = readval[r] = null;
ts [r] = sn[r] = rqid[r] = 0;
reading[r] = false ;
writeSet[r] = new HashSet();

}
}

private void handleCrash(Crash event) {
correct .setCorrect(event.getCrashedProcess(), false);
event.go();

allCorrect ();
}

private void handleSharedRead(SharedRead event) {
rqid[event.reg]++;
reading[event.reg] = true;
readval[event.reg] = v[event.reg];

WriteEvent ev = new WriteEvent(mainchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushObject(v[event.reg]);
ev.getExtendedMessage().pushInt(sn[event.reg]);
ev.getExtendedMessage().pushInt(rqid[event.reg]);
ev.getExtendedMessage().pushInt(event.reg);
ev.go();

}

private void handleSharedWrite(SharedWrite event) {
rqid[event.reg]++;
ts [event.reg]++;

WriteEvent ev = new WriteEvent(mainchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushObject(event.value);
ev.getExtendedMessage().pushInt(ts[event.reg]);
ev.getExtendedMessage().pushInt(rqid[event.reg]);
ev.getExtendedMessage().pushInt(event.reg);
ev.go();

}

private void handleWriteEvent(WriteEvent event) {
int r = event.getExtendedMessage().popInt();
int id = event.getExtendedMessage().popInt();
int tstamp = event.getExtendedMessage().popInt();

4.6 Hands-On 177

Object val = event.getExtendedMessage().popObject();

if (tstamp > sn[r]) {
v[r] = val ;
sn[r] = tstamp;

}

AckEvent ev = new AckEvent(pp2pchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushInt(id);
ev.getExtendedMessage().pushInt(r);
ev.dest = event.source;
ev.go();

}

private void handleAckEvent(AckEvent event) {
SampleProcess p j = correct.getProcess((InetWithPort) event.source);
int r = event.getExtendedMessage().popInt();
int id = event.getExtendedMessage().popInt();

if (id == rqid[r]) {
writeSet[r]. add(p j);

allCorrect ();
}

}

private void allCorrect() {
int reg;
for (reg = 0; reg < NUM REGISTERS; reg++) {

boolean allAcks = true;
int i ;
for (i = 0; (i < correct.getSize()) && allAcks; i++) {

SampleProcess p = correct.getProcess(i);
if (p.isCorrect() && !writeSet[reg]. contains(p))

allAcks = false;
}
if (allAcks) {

writeSet[reg]. clear ();

if (reading[reg]) {
reading[reg] = false ;

SharedReadReturn ev =
new SharedReadReturn(mainchannel, Direction.UP, this);

ev.reg = reg;
ev.value = readval[reg];
ev.go();

} else {
SharedWriteReturn ev =

new SharedWriteReturn(mainchannel, Direction.UP, this);
ev.reg = reg;
ev.go();

}
}

}
}

}

Try It Perform the same steps as suggested for the Regular (1, N) Register.
Please note that you should now specify the qos as a1nr.

178 4. Shared Memory

4.6.3 (N, N) Atomic Register

The (N, N) Atomic Register algorithm implemented was the“Read-Impose
Write-Consult.” The communication stack used to implement this protocol
is the following:

Application
(N, N) Atomic Register

(implemented by Read-Impose Write-Consult
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The protocol implementation is depicted in Listing 4.3. It follows Algo-
rithm 4.12–4.13 very closely. The only significant difference is that values are
again generic instead of integers.

Listing 4.3. Read-Impose Write-Consult (N, N) Atomic Register implementation

package appia.protocols.tutorialDA.readImposeWriteConsultNNAR;

public class ReadImposeWriteConsultNNARSession extends Session {
public static final int NUM REGISTERS = 20;

public ReadImposeWriteConsultNNARSession(Layer layer) {
super(layer);

}

private ProcessSet correct = null;
private int i = −1;
private HashSet[] writeSet = new HashSet[NUM REGISTERS];
private boolean[] reading = new boolean[NUM REGISTERS];
private int [] reqid = new int[NUM REGISTERS];
private Object[] readval = new Object[NUM REGISTERS];
private Object[] v = new Object[NUM REGISTERS];
private int [] ts = new int[NUM REGISTERS];
private int [] mrank = new int[NUM REGISTERS];

private Channel mainchannel = null;
private Channel pp2pchannel = null;
private Channel pp2pinit = null;

public void handle(Event event) {
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit) event);
else if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent) event);
else if (event instanceof Crash)

handleCrash((Crash) event);
else if (event instanceof SharedRead)

handleSharedRead((SharedRead) event);
else if (event instanceof SharedWrite)

handleSharedWrite((SharedWrite) event);
else if (event instanceof WriteEvent)

handleWriteEvent((WriteEvent) event);
else if (event instanceof AckEvent)

4.6 Hands-On 179

handleAckEvent((AckEvent) event);
else {

event.go();
}

}

public void pp2pchannel(Channel c) {
pp2pinit = c;

}

private void handleChannelInit(ChannelInit init) {
if (mainchannel == null) {

mainchannel = init.getChannel();
pp2pinit. start ();

} else {
if (init .getChannel() == pp2pinit) {

pp2pchannel = init.getChannel();
}

}
init .go();

}

private void handleProcessInit(ProcessInitEvent event) {
correct = event.getProcessSet();
init ();
event.go();

}

private void init() {
i=correct.getSelfRank();

int r ;
for (r = 0; r < NUM REGISTERS; r++) {

writeSet[r] = new HashSet();
reqid[r] = ts [r] = 0;
mrank[r] = −1;
readval[r] = null;
v[r] = null;
reading[r] = false ;

}
}

private void handleCrash(Crash event) {
correct .setCorrect(event.getCrashedProcess(), false);
event.go();

allAcked();
}

private void handleSharedRead(SharedRead event) {
reqid[event.reg]++;
reading[event.reg] = true;
writeSet[event.reg]. clear ();
readval[event.reg] = v[event.reg];

WriteEvent ev = new WriteEvent(mainchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushObject(v[event.reg]);
ev.getExtendedMessage().pushInt(mrank[event.reg]);
ev.getExtendedMessage().pushInt(ts[event.reg]);
ev.getExtendedMessage().pushInt(reqid[event.reg]);
ev.getExtendedMessage().pushInt(event.reg);
ev.go();

}

private void handleSharedWrite(SharedWrite event) {
reqid[event.reg]++;

180 4. Shared Memory

writeSet[event.reg]. clear ();

WriteEvent ev = new WriteEvent(mainchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushObject(event.value);
ev.getExtendedMessage().pushInt(i);
ev.getExtendedMessage().pushInt(ts[event.reg]+1);
ev.getExtendedMessage().pushInt(reqid[event.reg]);
ev.getExtendedMessage().pushInt(event.reg);
ev.go();

}

private void handleWriteEvent(WriteEvent event) {
int r = event.getExtendedMessage().popInt();
int id = event.getExtendedMessage().popInt();
int t = event.getExtendedMessage().popInt();
int j = event.getExtendedMessage().popInt();
Object val = event.getExtendedMessage().popObject();

if ((t > ts[r]) || ((t == ts[r]) && (j < mrank[r]))) {
v[r]=val;
ts [r]=t;
mrank[r]=j;

}

AckEvent ev = new AckEvent(pp2pchannel, Direction.DOWN, this);
ev.getExtendedMessage().pushInt(id);
ev.getExtendedMessage().pushInt(r);
ev.dest = event.source;
ev.go();

}

private void handleAckEvent(AckEvent event) {
SampleProcess p j = correct.getProcess((InetWithPort) event.source);
int r = event.getExtendedMessage().popInt();
int id = event.getExtendedMessage().popInt();

if (id == reqid[r]) {
writeSet[r]. add(p j);

allAcked();
}

}

private void allAcked() {
int reg;
for (reg = 0; reg < NUM REGISTERS; reg++) {

boolean allAcks = true;
int i ;
for (i = 0; (i < correct.getSize()) && allAcks; i++) {

SampleProcess p = correct.getProcess(i);
if (p.isCorrect() && !writeSet[reg]. contains(p))

allAcks = false;
}
if (allAcks) {

writeSet[reg]. clear ();

if (reading[reg]) {
reading[reg] = false ;

SharedReadReturn ev =
new SharedReadReturn(mainchannel, Direction.UP, this);

ev.reg = reg;
ev.value = readval[reg];
ev.go();

} else {
SharedWriteReturn ev =

4.7 Exercises 181

new SharedWriteReturn(mainchannel, Direction.UP, this);
ev.reg = reg;
ev.go();

}
}

}
}

}

Try It Perform the same steps as suggested for the Regular (1, N) Register.
Please note that you should now specify the qos as a1nnr.

4.7 Exercises

Exercise 4.1 Explain why every process needs to maintain a copy of the
register value in the “Read-One Write-All” algorithm (Algorithm 4.1) as well
as in the “Majority Voting” algorithm (Algorithm 4.2–4.3).

Exercise 4.2 Use the idea of the tranformation from (1, N) regular to (1, 1)
atomic registers (Algorithm 4.4) to adapt the “Read-One Write-All” algo-
rithm (i.e., Algorithm 4.1) to implement a (1, 1) Atomic Register.

Exercise 4.3 Use the idea of the tranformation from (1, N) regular to (1, 1)
atomic registers (Algorithm 4.4) to adapt the “Majority Voting” algorithm
(Algorithm 4.2–4.3) to implement a (1, 1) Atomic Register.

Exercise 4.4 Explain why a timestamp is needed in the “Majority Voting”
algorithm (Algorithm 4.2–4.3) but not in the “Read-One Write-All” algorithm
(Algorithm 4.1).

Exercise 4.5 Give an algorithm that implements a (1, 1) atomic register al-
gorithm in a fail-silent model and that is more efficient than the ”Read-Impose
Write-Majority” algorithm (itself implementing a (1, N) atomic register in
fail-silent model (Algorithm 4.9–4.10)).

Exercise 4.6 Does any implementation of a regular register require a ma-
jority of the correct processes in a fail-silent model with no failure detector?
What if an eventually perfect failure detector is available?

Exercise 4.7 Would the “Majority Voting” algorithm still be correct if a pro-
cess pj that receives a Write message from the writer p1 with a value v and
timestamp ts does not reply back (with an Ack message) if ts is not strictly
larger that the timestamp already kept by pi (associated with a previously
received Write message with a more recent value). Explain what happens
in the same situation if we consider the “Read-Impose Write-Majority” and
then the “Read-Impose Write-Consult-Majority” algorithms.

182 4. Shared Memory

Exercise 4.8 Assume that some algorithm A implements a regular register
in a system where up to N − 1 processes can crash. Can we implement a
perfect failure detector out of A?

Exercise 4.9 Explain why, in the “Logged Majority Voting” algorithm (Al-
gorithm 4.16–4.17), if the store primitive is not atomic, it is important not
to log the timestamp without having logged the value. Explain what happens
if the value is logged without having logged the timestamp.

Exercise 4.10 Explain why, in the “Logged Majority Voting” algorithm (Al-
gorithm 4.16–4.17), the writer needs to store its timestamp in stable storage.

4.8 Solutions

Solution 4.1 We discuss each algorithm separately.

Algorithm 4.1 (“Read-One Write-All”). In this algorithm, a copy of the reg-
ister value needs to be stored at every process because we assume that any
number of processes can crash and any process can read. Assume that the
value is not stored at some process pk. It is easy to see that after some write
operation, all processes might crash except for pk. In this case, there is no
way for pk to return the last value written.

Algorithm 4.2–4.3 (“Majority Voting”). In this algorithm, a copy of the reg-
ister value also needs to be maintained at all processes, even if we assume
only one reader. Assume that some process pk does not maintain a copy. As-
sume, furthermore, that the writer updates the value of the register: it can
do so only by accessing a majority of the processes. If pk is in that majority,
then the writer would have stored the value in a majority of the processes
minus one. It might happen that all processes in that majority, except for
pk, crash: the rest of the processes, plus pk, also constitutes a majority. A
subsequent read in this majority might not get the last value written. �

Solution 4.2 The “Read-One Write-All” algorithm (i.e., Algorithm 4.1) does
not need to be transformed to implement an atomic register if we consider
only one reader: indeed the scenario of Figure 4.4, which violates ordering,
involves two readers. As is, the algorithm implements a (1, 1) atomic register
where any process can write and one specific process, say, p2, can read. In
fact, if we assume a single reader, say p2, the algorithm can even be optimized
in such a way that the writer simply tries to store its value in p2, and gives
up if detects the crash of p2. Basically, only the reader p2 needs to maintain
the register value, and the writer p1 would not need to send any message to
all processes. �

4.8 Solutions 183

Algorithm 4.18 Adapted Majority Voting

Implements:
(1, 1)AtomicRegister (oo-areg).

Uses:
BestEffortBroadcast (beb);
perfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
forall r do

sn[r] := v[r] := acks[r] := reqid[r] := 0; readSet[r] := ∅;

upon event 〈 oo-aregWrite | r, val 〉 do
sn[r] := sn[r] + 1; v[r] := val; acks[r] := 1; reqid[r] := reqid[r] + 1;
trigger 〈 bebBroadcast | [Write, r, reqid[r], ts[r], val] 〉;

upon event 〈 bebDeliver | pj , [Write, r, id, tstamp, val] 〉 do
if tstamp > sn[r] then v[r] := val; sn[r] := tstamp;
trigger 〈 pp2pSend | pj , [Ack, r,id] 〉;

upon event 〈 pp2pDeliver | pj , [Ack, r, id] 〉 do
if id=reqid[r] then acks[r] := acks[r] + 1;

upon exists r such that acks[r] > N/2 do
trigger 〈 oo-aregWriteReturn | r 〉;

upon event 〈 oo-aregRead | r 〉 do
readSet[r] := ∅; reqid[r] := reqid[r] +1;
trigger 〈 bebBroadcast | [Read, r, reqid[r]] 〉;

upon event 〈 bebDeliver | pj , [Read, r, id] 〉 do
trigger 〈 pp2pSend | pj ,[ReadValue, r, id, sn[r], v[r]] 〉;

upon event 〈 pp2pDeliver | pj , [ReadValue, r, id, snb,val] 〉 do
if id=reqid[r] then readSet[r] := readSet[r] ∪ {(snb, val)};

upon exists r such that |readSet[r]| > N/2 do
(ts, v) := highest(readSet[r]); v[r] := v; sn[r] := ts;
trigger 〈 oo-aregReadReturn | r, v 〉;

Solution 4.3 Consider our“Majority Voting” algorithm, i.e., Algorithm 4.2–
4.3. This algorithm does not implement a (1, 1) atomic register but can easily
be extended to do so by satisfying the ordering property. The idea is to add a
simple local computation at the reader p2 which requires for it to update its
value and timestamp whenever p2 selects the value with the largest timestamp
before returning it. Then p2 has simply to make sure that it includes its
own value in the set (read majority) from which it selects new values. (The
problematic scenario of Figure 4.5 occurs precisely because the reader has no
memory of the previous value read.)

184 4. Shared Memory

p2

sn = 2

read() -> 6 read() -> 5

sn = 1

p1

write(5)

sn = 1

write(6)

sn = 2

sn = 1 sn = 1p3 sn = 1sn = 1sn = 1

sn = 1sn = 1

sn = 1

p4

p5 sn = 1

sn = 1

Fig. 4.7: Violation of ordering

A solution is depicted in Algorithm 4.18, an adaption of Algorithm 4.2–
4.3 (“Majority Voting”) that implements a (1, 1) atomic register. We assume
here that the reader includes itself in every read majority. Note that, in this
case, we assume that the function select returns a pair (timestamp, value)
(with the highest timestamp), rather than simply a value. With this algo-
rithm, the scenario of Figure 4.5 cannot occur, whereas the scenario depicted
in Figure 4.6 could. As in the original“Majority Voting” algorithm (Algo-
rithm 4.2–4.3), every write operation requires one communication roundtrip
between p1 and a majority of the processes, and every read requires one com-
munication roundtrip between p2 and a majority of the processes. In both
cases, 2N messages are exchanged. �

Solution 4.4 The timestamp of Algorithm 4.2–4.3 (“Majority Voting”) is
needed precisely because we do not make use of a perfect failure detector.
Without the use of any timestamp, reader p2 would not have any means to
compare different values from any read majority.

In particular, if p1 writes a value v and then a value v′, and p1 does not
access the same majority in both cases, then p2, which is supposed to return
v′, might not figure out which one is the latest. The timestamp is used to
date the values and help the reader figures out which is the latest.

Such a timestamp is not needed in Algorithm 4.1 (“Read-One Write-
All”). This is because the writer accesses all processes that did not crash.
The writer can do so because of its relying on a perfect failure detector. The
reader would not find different values as in the “Majority Voting” algorithm.
�

Solution 4.5 Algorithm 4.18 requires one communication roundtrip for every
operation. It is important to note that the reader p2 needs always include its
own value and timestamp when selecting a majority.

Unless it includes its own value and timestamp when selecting a majority,
the reader p2 might violate the ordering property as depicted in the scenario
of Figure 4.7. This is because, in its first read, p2 accesses the writer, p1,
which has the latest value. In its second read, p2 accesses a majority with

4.8 Solutions 185

timestamp 1 and old value 5. �

Solution 4.6 Assume by contradiction that the correct majority assumption
is not needed to implement a regular register in a fail-silent model.

The argument we use here is a partitioning argument and it is similar
to the argument used earlier in this book to explain why uniform reliable
broadcast requires a majority of the correct processes even if the system is
augmented with an eventually perfect failure detector.

We partition the system into two disjoint sets of processes, X and Y , such
that | X | = �n/2	; p1, the writer of the register, is in X , and p2, the reader of
the register, is in Y . The assumption that there is no correct majority means
here that there are executions where all processes of X crash and executions
where all processes of Y crash.

Basically, the writer p1 might return from having written a value, say,
v, even if none of the processes in Y has witnessed this value. The other
processes, including p2, were considered to have crashed, even if they did
not. If the processes of X which might have witnessed v later crash, the
reader, p2, has no way of knowing about v and might not return the last
value written.

Note that assuming an eventually perfect detector does not lead to cir-
cumventing the majority assumption. This is because, even with such a failure
detector, the processes of X , including the writer p1, might return from hav-
ing written a value, say, v, even if no process in Y has witnessed v. The
processes of Y might have been falsely suspected, and there is no way to
know whether the suspicions are true or false. �

Solution 4.7 Consider a variant of the “Majority Voting” algorithm where
a process pj that receives a Write message from the writer p1 with a value
v and timestamp ts does not reply back (with an Ack message) to p1 if ts is
not strictly larger that the timestamp already kept by pi (associated with a
previously received Write message with a more recent value v′).

clearly, the only risk here is to violate liveness and prevent p1 from com-
pleting the writing of v. However, given that pi has already stored a more
recent value than v, i.e., v′, this means that p1 has already completed v.
(Remember that the processes are sequential and, in particular, p1 does not
issue a new operation before completing the current one).

The same argument holds for the “Read-Impose Write-Majority” algo-
rithm because a single writer (i.e., p1) is involved and it is sequential.

The situation is however different with the “Read-Impose Write-Consult-
Majority” algorithm. This is because of the possibility of multiple writers.
Consider two writers p1 and p2, both sending Write messages to some pro-
cess pi, with different values v and v′ respectively such that v′ is more recent
than v (v’ has a larger timestamp than v). Assume pi receives v′ first from
p2 and does not reply back to p1. It might happen in this case that p1 does

186 4. Shared Memory

not complete its write operation. �

Solution 4.8 The answer is yes, and this means that a perfect failure detector
is needed to implement a regular register if N − 1 processes can crash.

We sketch the idea of an algorithm A′ that uses A to implement a per-
fect failure detector, i.e., to emulate its behavior within a distributed vari-
able v[P]. Every process pi has a copy of this variable, denoted by v[P]i.
The variable v[P]i is supposed to contain a set of processes suspected by pi

according to the strong completeness and strong accuracy properties of the
perfect failure detector P . The variable is initially empty at every process
and the processes use algorithm A, and the register they can build out of A,
to update the variable.

The principle of algorithm A′ is the following. It uses N regular (1, N)
registers: every process is the writer of exactly one register (we say its reg-
ister). Every process pi holds a counter that pi keeps on incrementing and
writing in its register. For a value k of the counter, pi triggers an instance of
algorithm A, which itself triggers an exchange of messages among processes.
Whenever a process pj receives such a message, it tags it with k and its iden-
tity. When pi receives, in the context of its instance k of A, a message tagged
with pj and k, pi remembers pj as one of the processes that participated in
its kth writing. When the write terminates, pi adds to v[P]i all processes that
did not participate in the kth writing and never removes them from v[P]i.

It is easy to see that variable v[P] ensures strong completeness. Any pro-
cess that crashes stops participating in the writing and will be permanently
suspected by every correct process. We argue now that it also ensures strong
accuracy. Assume by contradiction that some process pj is falsely suspected.
In other words, process pj does not participate in the k’th writing of some
process pi in the register. Given that N − 1 processes can crash, right after
pi terminates its k’t writing, all processes can crash except pj. The latter
has no way of distinguishing a run where pi did write the value k from a
run where pi did not write such a value. Process pj might hence violate the
validity property of the register. �

Solution 4.9 Assume p1 writes a value v, then a value v′, and then a value
v′′. While writing v, assume p1 accesses some process pk and not p′k whereas,
while writing v′, p1 accesses p′k and not pk. While writing v′′, p1 also accesses
pk, which logs first the timestamp and then crashes without logging the as-
sociated value, and then recovers. When reading, process p2 might select the
old value v because it has a larger timestamp, violating validity.

On the other hand, logging the timestamp without logging the value is
not necessary (although desirable to minimize accesses to stable storage). In
the example depicted above, p2 would not be able to return the new value
because it still has an old timestamp. But that is okay because the value was

4.9 Historical Notes 187

not completely written and there is no obligation to return it. �

Solution 4.10 The reason for the writer to log its timestamp in Algo-
rithm 4.16–4.17 is the following. If it crashes and recovers, the writer should
not use a smaller timestamp than the one associated with the current value
of the register. Otherwise, the reader might return an old value and violate
the validity property of the register. �

4.9 Historical Notes

• Register specifications were first given by Lamport (Lamport 1977; Lam-
port 1986a; Lamport 1986b), for the case of a concurrent but failure-free
system with one writer. The original notion of atomic register was close to
the one we introduced here. There is a slight difference, however, in the way
we gave our definition because we had to take into account the possibility
for the processes to fail independently of each other, which is typical in a
message passing system. (The original definition was given in the context
of a multiprocessor machine where processes are sometimes not assumed
to fail independently.) We had thus to deal explicitly with the notion of
failed operations, and, in particular, failed writes.

• In the fail-stop model, our notion of atomicity is similar to the notion of
linearizability (Herlihy and Wing 1990). In the fail-recovery model, we had
to consider a slightly different notion to take into account the fact that
a write operation that was interrupted by a failure has to appear as if it
was never invoked or as if it was completed before the next invocation of
the same process, which might have recovered, took place (Guerraoui and
Levy 2004).

• Our notion of regular register also corresponds to the notion of initially
introduced by Lamport (Lamport 1977; Lamport 1986a; Lamport 1986b).
For the case of multiple writers, the notion of regular register was gener-
alized in three different ways (Shao, Pierce, and Welch 2003), all stronger
than our notion of regular register.

• A strictly weaker notion of register than the regular one was also con-
sidered in the literature: the safe register (Lamport 1977; Lamport 1986a;
Lamport 1986b). A safe register is similar to a regular one when there is no
concurrency: the read should return the last value written. When there is
concurrency, a safe register can return an arbitrary value. This value does
not need to be some value that a process has written, or tried to write
(i.e., an input parameter or a write invocation). It does not even need to
be the initial value of the register. Again, this difference reflects the case
where concurrent accesses to a hardware device might lead to an arbitrary
output. In the message passing model we consider, a value cannot simply

188 4. Shared Memory

be invented out of thin air and needs to be communicated through message
passing, which we assume not to be able to alter or create messages.

• In this chapter, we considered registers that can contain integer values,
and we did not make any assumption on the possible range of these values.
Registers with values of a limited range have also been considered (Lamport
1977), i.e., the value in the register cannot be greater than some specific
value V . Several transformation algorithms were also invented, including
some to emulate a register with a given range value into a register with a
larger range value (Lamport 1977; Peterson 1983; Vitanyi and Awerbuch
1986; Vidyasankar 1988; Vidyasankar 1990; Israeli and Li 1993).

• Fail-silent register implementations over a crash-stop message passing sys-
tem and assuming a correct majority were first given for the case of a sin-
gle writer (Attiya, Bar-Noy, and Dolev 1995). They were later generalized
for the case of multiple writers (Lynch and Shvartsman 1997; Lynch and
Shvartsman 2002). Implementations in the fail-recovery model were given
more recently (Boichat, Dutta, Frolund, and Guerraoui 2001; Guerraoui
and Levy 2004).

• Failure detection lower bounds for registers have constituted an active area
of research (Delporte-Gallet, Fauconnier, and Guerraoui 2002; Delporte-
Gallet, Fauconnier, Guerraoui, Hadzilacos, Kouznetsov, and Toueg 2004;
Delporte-Gallet, Fauconnier, and Guerraoui 2005). In particular, and as we
discussed through an exercise, in a system where any number of processes
can crash and failures cannot be predicted, the weakest failure detector to
implement a (regular or atomic) register abstraction is the Perfect one.

• We considered in this chapter implementations of shared memory abstrac-
tions assuming that processes do not behave maliciously. That is, we as-
sumed that processes can simply deviate from the algorithms assigned
to them by crashing and halting their activities. Several researchers have
studied shared memory abstractions with underlying malicious processes,
bridging the gap between distributed computing and security (Malkhi and
Reiter 1997; Martin and Alvisi 2004).

5. Consensus

Life is what happens to you while you are making other plans.
(John Lennon)

This chapter considers the consensus abstraction. The processes use this ab-
straction to agree on a common value out of values they initially propose.
We consider four variants of this abstraction: regular, uniform, logged, and
randomized. We will show later in this book (Chapter 6) how consensus ab-
stractions can be used to build more sophisticated forms of agreements.

5.1 Regular Consensus

5.1.1 Specification

Consensus is specified in terms of two primitives: propose and decide. Each
process has an initial value that it proposes for the agreement, through the
primitive propose.

The proposed values are private to the processes and the act of proposing
is local. This act typically triggers broadcast events through which the pro-
cesses exchange their proposed values in order to eventually reach agreement.
All correct processes have to decide on a single value, through the primitive
decide. This decided value has to be one of the proposed values. Consensus,
in its regular form, satisfies the properties C1–C4 listed in Module 5.1.

In the following, we present two different algorithms to implement con-
sensus. Both algorithms are fail-stop: they rely on a perfect failure detector
abstraction. The first algorithm uses a small number of communication steps
but a large number of messages. The second, uses fewer messages but more
communication steps.

190 5. Consensus

Module 5.1 Interface and properties of consensus

Module:

Name: (regular) Consensus (c).

Events:

Request: 〈 cPropose | v 〉: Used to propose a value for consensus.

Indication: 〈 cDecide | v 〉: Used to indicate the decided value for con-
sensus.

Properties:

C1: Termination: Every correct process eventually decides some value.

C2: Validity: If a process decides v, then v was proposed by some process.

C3: Integrity: No process decides twice.

C4: Agreement: No two correct processes decide differently.

5.1.2 Fail-Stop Algorithm: Flooding Consensus

Our first consensus algorithm, Algorithm 5.1, called “Flooding Consensus”
uses, besides a perfect failure detector, a best-effort broadcast communication
abstraction. The basic idea of the algorithm is the following. The processes
execute sequential rounds. Each process maintains the set of proposed values
(proposals) it has seen, and this set is typically augmented when moving from
one round to the next (and new proposed values are encountered). In each
round, every process disseminates its set to all processes using the best-effort
broadcast abstraction, i.e., the process floods the system with all proposals
it has seen in previous rounds. When a process receives a proposal set from
another process, it merges this set with its own. That is, in each round, every
process computes the union of all sets of proposed values it received so far.

Roughly speaking, a process decides a specific value in its set when it
knows it has gathered all proposals that will ever possibly be seen by any
correct process. We explain, in the following, (1) when a round terminates
and a process moves from one round to the next, (2) when a process knows
it is safe to decide, and (3) how a process selects the value to decide.

1. Every message is tagged with the round number in which the message was
broadcast. A round terminates at a given process pi when pi has received
a message from every process that has not been detected to have crashed
by pi in that round. That is, a process does not leave a round unless it
receives messages, tagged with that round, from all processes that have
not been detected to have crashed.

2. A consensus decision is reached when a process knows it has seen all
proposed values that will be considered by correct processes for possible
decision. In a round where a new failure is detected, a process pi is not
sure of having exactly the same set of values as the other processes. This

5.1 Regular Consensus 191

Algorithm 5.1 Flooding Consensus

Implements:
Consensus (c).

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
correct := correct-this-round[0] := Π ;
decided := ⊥; round := 1;
for i = 1 to N do

correct-this-round[i] := proposal-set[i] := ∅;

upon event 〈 crash | pi 〉 do
correct := correct \{pi};

upon event 〈 cPropose | v 〉 do
proposal-set[1] := proposal-set[1] ∪ {v};
trigger 〈 bebBroadcast | [MySet, 1, proposal-set[1]] 〉;

upon event 〈 bebDeliver | pi, [MySet, r, set] 〉 do
correct-this-round[r] := correct-this-round[r] ∪ {pi};
proposal-set[r] := proposal-set[r] ∪ set;

upon correct ⊂ correct-this-round[round] ∧ (decided = ⊥) do
if (correct-this-round[round] = correct-this-round[round-1]) then

decided := min (proposal-set[round]);
trigger 〈 cDecide | decided 〉;
trigger 〈 bebBroadcast | [Decided, decided] 〉;

else
round := round +1;
trigger 〈 bebBroadcast | [MySet, round, proposal-set[round-1]] 〉;

upon event 〈 bebDeliver | pi, [Decided, v] 〉 ∧ pi ∈ correct ∧ (decided = ⊥) do
decided := v;
trigger 〈 cDecide | v 〉;
trigger 〈 bebBroadcast | [Decided, decided] 〉;

might happen because the crashed process(es) may have broadcast some
value(s) to the other processes but not to pi. In order to know when
it is safe to decide, each process keeps a record of the processes it did
not detect to have crashed in the previous round, and from how many
processes it has received a proposal in the current round. If a round
terminates with the same number of undetected crashed processes as in
the previous round, a decision can be made. (No new failure is detected
in that round). In a sense, all the messages broadcast by all processes
that moved to the current round did reach their destination.

192 5. Consensus

p1

p2

p3

p4

round 1 round 2

cPropose (3)

cPropose (5)

cPropose (8)

cPropose (7)

cDecide (3=min(3,5,8,7))

cDecide (3)

cDecide (3)

(5,8,7)

(5,8,7)

Fig. 5.1: Sample execution of flooding consensus

3. To make a decision, a process can apply any deterministic function to
the set of accumulated values, provided this function is the same at all
processes (i.e., it is agreed upon by all processes in advance). In our
case, the process decides the minimum value (through function min in
the algorithm); we implicitly assume here that the set of all possible
proposals is totally ordered and the order is known by all processes.
(The processes could also pick the value proposed by the process with
the lowest identity, for instance.) A process that decides disseminates the
decision to all processes using the best-effort broadcast abstraction.

An execution of the “Flooding Consensus” algorithm is illustrated in Fig-
ure 5.1. Process p1 crashes during the first round (round 1) after broadcasting
its proposal. Only p2 sees that proposal. No other process crashes. Therefore,
p2 sees the proposals of all processes and can decide. This is because the set
of processes from which it receives proposals in the first round is the same
as the initial set of processes which start the algorithm (round 0). Process
p2 selects the min of the proposals and decides value 3. Processes p3 and p4

detect the crash of p1 and cannot decide. So they advance to the next round,
namely, round 2.

Note that if any of these processes (p3 and p4) decided the min of the
proposals it had after round 1, it would have decided differently, i.e., value
5. Since p2 has decided, p2 disseminates its decision through a best-effort
broadcast. When the decision is delivered, processes p3 and p4 also decide 3.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the communication abstractions.

Termination follows from the fact that at round N , at the latest, all
processes decide. This is because (1) processes that do not decide keep moving
from round to round due to the completeness property of the failure detector,
(2) at least one process needs to fail per round, in order to force the execution
of a new round without decision, and (3) there are only N processes in the
system.

5.1 Regular Consensus 193

Consider now agreement. Let r be the smallest round in which some cor-
rect process pi decides and v be the value it decides. There are two cases to
consider. (1) Assume that process pi decides after observing two similar sets
of undetected (to have crashed) processes (correct− this− round[round]) in
the two consecutive rounds r − 1 and r. Due to the accuracy property of the
failure detector, no process that reaches the end of round r sees a smaller
value than v. Let pj be any of those processes. Either pj detects no failure
in round r, in which case it also decides v, or pj detects some failure and it
decides v in round r +1 after delivering a Decided message from pi. (2) As-
sume that pi decides after delivering a Decided message from some process
pk which crashed in round r. Processes that detect the crash of pk do not
decide in round r but in round r + 1, after delivering a Decided message
from pi.

Performance. If there are no failures, then the algorithm requires a single
communication step: all processes decide at the end of round 1. Each failure
may cause at most one additional communication step. Therefore, in the worst
case, the algorithm requires N steps, if N − 1 processes crash in sequence.

If there are no failures, N 2 messages are exchanged before a decision is
reached (N2 Decided messages are also exchanged after the decision). There
are an additional N2 message exchanges for each round where a process
crashes.

5.1.3 Fail-Stop Algorithm: Hierarchical Consensus

Algorithm 5.2, called “Hierarchical Consensus”, is an alternative way to im-
plement regular consensus. This algorithm is interesting because it uses less
messages than our “Flooding Consensus” algorithm and enables one process
to decide before exchanging any messages with the rest of the processes (0-
latency). However, to reach a global decision, i.e., for all correct processes
to decide, the algorithm requires N communication steps, even in situations
where no failure occurs. Algorithm 5.2 is particularly adequate if consensus
is used as a service implemented by a set of server processes where the clients
are happy to get a value as fast as possible, even if the servers did not all
decide that value yet.

“Hierarchical Consensus” (Algorithm 5.2) makes use of the fact that pro-
cesses can be ranked according to their identity, and this rank is used to
totally order them a priori, i.e., p1 > p2 > p3 > .. > pN . In short, the algo-
rithm ensures that the correct process with the highest rank in the hierarchy,
i.e., the process with the lowest identity, imposes its value on all the other
processes.

Basically, if p1 does not crash, then p1 will impose its value on all pro-
cesses: every correct process will decide the value proposed by p1. If p1 crashes
initially and p2 is correct, then the algorithm ensures that p2’s proposal will
be accepted. A nontrivial issue that the algorithm handles is the case where

194 5. Consensus

Algorithm 5.2 Hierarchical Consensus

Implements:
Consensus (c).

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
detected := ∅; round := 1;
proposal := ⊥; proposer :=0;
for i = 1 to N do

delivered[i] := broadcast[i] := false;

upon event 〈 crash | pi 〉 do
detected := detected ∪ {rank(pi)};

upon event 〈 cPropose | v 〉 ∧ (proposal = ⊥) do
proposal := v;

upon (round = rank (self)) ∧ (proposal �= ⊥) ∧ (broadcast[round] = false) do
broadcast[round] := true;
trigger 〈 cDecide | proposal 〉;
trigger 〈 bebBroadcast | [Decided, round, proposal] 〉;

upon (round ∈ detected) ∨ (delivered[round] = true) do
round := round + 1;

upon event 〈 bebDeliver | pi, [Decided, r, v] 〉 do
if (r < rank (self)) ∧ (r > proposer) then

proposal := v;
proposer := r;

delivered[r] := true;

p1 is faulty, but does not initially crash, whereas p2 is correct. The issue has
to do with the fact that p1’s decision message might only reach process p3

but not p2.
“Hierarchical Consensus” works in rounds and uses a best-effort broadcast

abstraction. In the kth round, process pk decides its proposal, and broadcasts
it to all processes: all other processes in round k wait to deliver the message
of pk or to suspect pk. None of these processes broadcast any message in this
round. When a process pk receives the proposal of pi, in round i < k, pk

adopts this proposal as its own new proposal.
Consider the example depicted in Figure 5.2. Process p1 decides 3 and

broadcasts its proposal to all processes, but crashes. Processes p2 and p3

detect the crash before they deliver the proposal of p1 and advance to the
next round. Process p4 delivers the value of p1 and changes its own proposal
accordingly, i.e., p4 adopts p1’s value. In round 2, process p2 decides and

5.2 Uniform Consensus 195

p1

p2

p3

p4

cPropose (3)

cPropose (5)

cPropose (8)

cPropose (7)

round 1 round 2 round 3 round 4

cDecide (5)

cDecide (5)

cDecide (5)

(3)

(5)

(5)

Fig. 5.2: Sample execution of hierarchical consensus

broadcasts its own proposal. This causes p4 to change its proposal again, i.e.,
now p4 adopts p2’s value. From this point on, there are no further failures
and the processes decide in sequence the same value, namely, p2’s value (5).

Correctness. The validity and integrity properties follow from the algorithm
and the use of an underlying best-effort broadcast abstraction. Termination
follows from the completeness property of the perfect failure detector and the
validity property of best-effort broadcast: no process will remain indefinitely
blocked in a round and every correct process pi will eventually reach round
i and decide in that round.

Consider now agreement; let pi be the correct process with the highest
rank which decides some value v. According to the algorithm, every process
pj , such that j > i, decides v: no process will suspect pi because pi is correct.
This is guaranteed by the accuracy property of the perfect failure detector.
Hence, every process will adopt and decide pi’s decision.

Performance. The algorithm requires N communication steps to terminate.
The algorithm exchanges N messages in each round and can clearly be op-
timized to use fewer messages: a process does not need to send a message
to processes with a higher rank. No process pi ever uses the value broadcast
from any process pj such that i ≥ j.

5.2 Uniform Consensus

5.2.1 Specification

As with reliable broadcast, we can define a uniform variant of consensus. The
uniform specification is presented in Module 5.2: correct processes decide a
value that must be consistent with values decided by processes that might
have decided before crashing. In short, uniform consensus ensures that no
two processes decide different values, whether they are correct or not.

None of the consensus algorithms we presented so far ensure uniform
agreement. Roughly speaking, this is because some of the processes decide

196 5. Consensus

Module 5.2 Interface and properties of uniform consensus

Module:

Name: UniformConsensus (uc).

Events:

〈 ucPropose | v 〉, 〈 ucDecide | v 〉: with the same meaning and interface
as the consensus interface.

Properties:

C1–C3: from consensus.

C4’: Uniform Agreement: No two processes decide differently.

too early: without making sure that their decision has been seen by enough
processes. Should the deciding processes crash, other processes might have
no choice but to decide a different value.

To illustrate the issue in our “Flooding Consensus” algorithm, i.e., Al-
gorithm 5.1, consider a scenario where process p1, at the end of round 1,
receives messages from all processes. Assume, furthermore, that p1 decides
its own value as this turns out to be the smallest value. Assume, however,
that p1 crashes after deciding and its message does not reach any other pro-
cess. The rest of the processes move to round 2 without having received p1’s
message. Again, the processes are likely to decide some other value.

To illustrate this issue in our “Hierarchical Consensus” algorithm, i.e.,
Algorithm 5.2, remember that process p1 decides its own proposal in a uni-
lateral way, without making sure its proposal is seen by any other process.
Hence, if process p1 crashes immediately after deciding, it is likely that the
other processes decide a different value.

In the following, we present two uniform consensus algorithms for the fail-
stop model. Each algorithm can be viewed as a uniform variant of one of our
regular consensus algorithms above: “Flooding Consensus” and “Hierarchical
Consensus”, respectively. We simply call them “Uniform Flooding Consen-
sus” and “Uniform Hierarchical Consensus”, respectively. Subsequently, we
also present an algorithm for the fail-noisy model.

5.2.2 Fail-Stop Algorithm: Flooding Uniform Consensus

Algorithm 5.3 implements uniform consensus. The processes follow sequential
rounds. As in our “Flooding Consensus” algorithm, each process gathers a set
of proposals that it has seen and disseminates its own set to all processes using
a best-effort broadcast primitive. The main difference with Algorithm 5.3 is
that all processes wait for round N before deciding.

Correctness. Validity and integrity follow from the algorithm and the proper-
ties of best-effort broadcast. Termination is ensured here because all correct
processes reach round N and decide in that round. This is ensured by the

5.2 Uniform Consensus 197

Algorithm 5.3 Flooding Uniform Consensus

Implements:
UniformConsensus (uc).

Uses:
BestEffortBroadcast (beb);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
correct := Π ; round := 1; decided := ⊥; proposal-set := ∅;
for i = 1 to N do delivered[i] := ∅;

upon event 〈 crash | pi 〉 do
correct := correct \ {pi};

upon event 〈 ucPropose | v 〉 do
proposal-set := proposal-set ∪ {v};
trigger 〈 bebBroadcast | [MySet, 1, proposal-set] 〉;

upon event 〈 bebDeliver | pi, [MySet, r, newSet] 〉 do
proposal-set := proposal-set ∪ newSet;
delivered[r] := delivered[r] ∪ {pi};

upon (correct ⊆ delivered[round]) ∧ (decided = ⊥) do
if round = N then

decided := min (proposal-set);
trigger 〈 ucDecide | decided) 〉;

else
round := round + 1;
trigger 〈 bebBroadcast | [MySet, round, proposal-set] 〉;

completeness property of the failure detector. Uniform agreement is ensured
because all processes that reach round N have the same set of values.

Performance. The algorithm requires N communication steps and N 3 mes-
sages for all correct processes to decide.

5.2.3 Fail-Stop Algorithm: Hierarchical Uniform Consensus

Algorithm 5.4 is round-based, hierarchical, and is in this sense similar to
our “Hierarchical Consensus” algorithm. Algorithm 5.4 uses both a best-
effort broadcast abstraction to exchange messages and a reliable broadcast
abstraction to disseminate the decision. We explain the need for the latter
after an overview of the algorithm.

Every round has a leader: process pi is the leader of round i. Unlike
our “Hierarchical Consensus” algorithm, however, a round here consists of
two communication steps: within the same round, the leader broadcasts a

198 5. Consensus

message to all processes, trying to impose its value, and then expects to get
an acknowledgment from all. Processes that get a proposal from the leader
of the round adopt this proposal as their own and send an acknowledgment
back to the leader of the round. If it succeeds in collecting an acknowledgment
from all correct processes, the leader disseminates the value decided on using
a reliable broadcast communication abstraction.

If the leader of a round fails, the correct processes detect this and pro-
ceed to the next round with a new leader, unless they have already delivered
the decision through the reliable broadcast abstraction. Note that even if the
leader fails after disseminating the decision, the reliable broadcast abstraction
ensures that, if any process decides and stops taking any leadership action,
then all correct processes will also decide. This property would not be guaran-
teed by a best-effort broadcast abstraction. (An alternative would have been
to use a best-effort broadcast but have processes continue the algorithm even
if they receive a decision message.)

Correctness. Validity and integrity follow trivially from the algorithm and
the properties of the underlying communication abstractions.

Consider termination. If some correct process decides, it decides through
the reliable broadcast abstraction, i.e., by rbDelivering a decision message.
Due to the properties of this broadcast abstraction, every correct process rb-
Delivers the decision message and decides. Hence, either all correct processes
decide or no correct process decides. Assume by contradiction that there is
at least one correct process, and no correct process decides. Let pi be the
correct process with the highest rank. Due to the completeness property of
the perfect failure detector, every correct process detects the crashes of the
processes with higher ranks than pi (or bebDelivers their message). Hence, all
correct processes reach round i and, due to the accuracy property of the fail-
ure detector, no process detects the crash of process pi or moves to a higher
round, i.e., all correct processes wait until a message from pi is bebDelivered.
In this round, process pi hence succeeds in collecting acknowledgments from
all correct processes and deciding.

Consider now agreement, and assume that two processes decide differently.
This can only be possible if two processes rbBroadcast two decision messages
with two propositions. Consider any two processes pi and pj, such that j > i
and pi and pj rbBroadcast two decision values v and v′. Because of the
accuracy property of the failure detector, process pj must have adopted v
before reaching round j.

Performance. If there are no failures, the algorithm terminates in three com-
munication steps: two steps for the first round and one step for the reliable
broadcast. The algorithm exchanges 3N messages. Each failure of a leader
adds two additional communication steps and 2N additional messages.

5.3 Abortable Consensus 199

Algorithm 5.4 Hierarchical Uniform Consensus

Implements:
UniformConsensus (uc).

Uses:
ReliableBroadcast (rb);
BestEffortBroadcast (beb);
PerfectPointToPointLinks (pp2p);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
proposal := decided := ⊥; round := 1;
detected := ack-set := ∅;
for i = 1 to N do proposed[i] := ⊥;

upon event 〈 crash | pi 〉 do
detected := detected ∪ { rank(pi) };

upon event 〈 ucPropose | v 〉 ∧ (proposal = ⊥) do
proposal := v;

upon (round = rank(self)) ∧ (proposal �= ⊥) ∧ (decided = ⊥) do
trigger 〈 bebBroadcast | [Propose, round, proposal] 〉;

upon event 〈 bebDeliver | pi, [Propose, r, v] 〉 do
proposed[r] = v;
if r ≥ round then

trigger 〈 pp2pSend | pi, [Ack, r] 〉;

upon round ∈ detected do
if proposed[round] �= ⊥ then

proposal := proposed[round];
round := round + 1;

upon event 〈 pp2pDeliver | pi, [Ack, r] 〉 do
ack-set := ack-set ∪ {rank(pi)};

upon |ack-set ∪ detected| = N do
trigger 〈 rbBroadcast | [Decided, proposal] 〉;

upon event 〈 rbDeliver | pi, [Decided, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 ucDecide | v 〉;

5.3 Abortable Consensus

5.3.1 Overview

All the consensus and uniform consensus algorithms we have given so far
assume a fail-stop model: they rely on the assumption of a perfect failure

200 5. Consensus

detector. It is easy to see that, in any of those algorithms, a false failure
suspicion (i.e., a violation of the accuracy property of the failure detector)
might lead to the violation of the agreement property of consensus (see the
exercice part at the end of this chapter). That is, if a process is detected to
have crashed while it is actually correct, then two correct processes might
decide differently. On the other hand, in any of those algorithms, not sus-
pecting a crashed process (i.e., violating the completeness property of the
failure detector) might lead to the violation of the termination property of
consensus.

In fact, there is no solution to consensus in a fail-silent model if at least
one process can crash. Note that this does not mean that a perfect failure
detector is always necessary. As we will describe below, there is a consen-
sus algorithm based on an eventual leader detector (which can itself be im-
plemented assuming an eventually perfect failure detector), i.e., assuming
a fail-noisy model. This solution is however quite involved. To simplify its
presentation, we introduce here an intermediate abstraction, which we call
abortable consensus. Roughly speaking, this abstraction is weaker than con-
sensus because processes do not always need to decide: they can abort in case
of contention.

Abortable consensus can be implemented in a fail-silent model, provided
a majority of the processes are correct. We will later show how, given such
abstraction, (uniform) consensus can be obtained in a fail-noisy model. In
the exercise section, we will also show that any fail-noisy algorithm that
solves consensus also solves uniform consensus, and no fail-silent algorithm
can solve abortable consensus (respectively, no fail-noisy algorithm can solve
consensus) without a correct majority of the processes.

5.3.2 Specification

Just like consensus, abortable consensus has a single propose operation. This
operation takes one input parameter, i.e., a proposal for a consensus decision.
The operation is also supposed to return a value. Unlike consensus, however,
the value returned is not necessarily a value that was proposed by some
process. It could also be a specific indication ⊥, meaning that consensus has
aborted. It is important to note that the specific value ⊥ is not a value that
could be proposed to consensus. We use the following terminology to define
the abortable consensus abstraction.

• When a process invokes the propose operation with v as an argument, we
say that the process proposes v.

• When a process returns from the invocation with v �=⊥, we say that the
process decides v.

• When a process returns from the invocation with ⊥, we say that the process
aborts.

5.3 Abortable Consensus 201

Module 5.3 Interface and properties of abortable consensus

Module:

Name: Abortable Consensus (ac).

Events:

Request: 〈 acPropose | v 〉: Used to propose a value v.

Indication: 〈 acReturn | x 〉: Used to return x, either a decision value or
⊥, as a response to the proposition.

Properties:

AC1: Termination: Every correct process that proposes eventually decides
or aborts.

AC2: Decision: If a single process proposes infinitely often, it eventually
decides.

AC3: Agreement: No two processes decide differently.

AC4: Validity: Any value decided must have been proposed.

With consensus, we require, when a process decides v that v have been pro-
posed by some process: v cannot be invented out of thin air. Furthermore,
once a process has decided a value v, no other process can decide a different
value v′. We explain now intuitively when a process can abort and when it
has to decide. Roughly speaking;

• A process might abort if another process tries concurrently to propose a
value.

• If only one process keeps proposing, then this process eventually decides.
Underlying this idea lies the very fact that abortable consensus is typically
an abstraction that processes might (need to) use in a repeated fashion.

Module 5.3 describes the interface and specification of abortable consensus.

5.3.3 Fail-Silent Algorithm: RW Abortable Consensus

We describe here a fail-silent algorithm that implements abortable consensus.
The algorithm assumes a majority of the correct processes. We do not make
use of any failure detection scheme.

In short, the idea underlying the algorithm is the following. Each process
stores an estimate of the proposal value as well as a corresponding timestamp.
A process pi that proposes a value first determines a timestamp to associate
with that value: this is simply done by having the process increment its
previous timestamp with the value N . Then the process proceeds in two
phases: a read and then a write phase. Hence the name of the algorithm:
“RW Abortable Consensus.”

The aim of the read phase is to check if there already is some estimate of
the decision in the system, whereas the aim of the write phase is to reach a

202 5. Consensus

decision. Any of these phases can abort, in which case the process returns back
the abort value ⊥. The other processes act during these phases as witnesses.

We describe below the two phases of the algorithm for the process that is
proposing a value, say, pi, as well as the tasks of the witness processes.

• Read. The aim of this phase, described in Algorithm 5.5, is twofold.

1. First, the aim is for pi to check, from a majority of the witness processes,
the estimates already stored in the processes, and the timestamps that
those processes have already seen. If any of those timestamps is largest
than the timestamp that pi is proposing, then pi aborts. Otherwise, pi

selects the value with the largest timestamp, or its own proposal if no
such value has been stored, and then proceeds to the write phase. We
make use here of a function highest that returns the estimate value with
the largest timestamp from a set of (timestamp, value) pairs.

2. The second aim is for pi to get a promise from a majority of the processes
that no other process will succeed in a read or write phase with a smaller
timestamp.

• Write. The aim of this phase, described in Algorithm 5.6, is also twofold.

1. The first aim is for pi to store an estimate value in a majority of the
witness processes, and then decide that value. While doing so, pi might
figure out that some process in the majority has seen a larger timestamp
than the one pi is proposing. In this case, pi simply aborts. Otherwise,
pi decides.

2. The second aim is for pi to get a promise from a majority of processes
that no other process will succeed in a read or write phase with a strictly
smaller timestamp.

Correctness. The termination and validity properties follow from the prop-
erties of the channels and the assumption that a majority of the correct
processes exists.

Consider now the decision property. Let pi be the process that keeps on
proposing infinitely often, and let t be the time after which no other process
proposes a value. Assume by contradiction that no process decides. According
to the algorithm, pi keeps on incrementing its timestamp until it gets to a
timestamp no process has ever used. Due to the properties of the channels
and the algorithm, there is a time t′ higher than t after which pi decides. A
contradiction.

Consider now agreement. Let pi be the process which decides with the
smallest timestamp ti. Assume pi decides value vi. By induction on the times-
tamp, any process that decides with a larger timestamp tj , does so on value
vi. Clearly, tj �= ti, otherwise, according to the algorithm and the use of a
majority, some process will abort the read phase of pi or pj . Assume the
induction property up to some timestamp tj > ti, and consider tj + 1. Ac-
cording to the algorithm, pj selects the value with the largest timestamp from
a majority, and this must be vi in a majority, with the largest timestamp.

5.3 Abortable Consensus 203

Algorithm 5.5 RW Abortable Consensus: Read Phase

Implements:
Abortable Consensus (ac).

Uses:
BestEffortBroadcast (beb);
PerfectPointToPointLinks (pp2p).

upon event 〈 Init 〉 do
tempValue := val := ⊥;
wAcks := rts := wts := 0;
tstamp := rank(self);
readSet := ∅;

upon event 〈 acPropose | v 〉 do
tstamp := tstamp+N ;
tempValue := v;
trigger 〈 bebBroadcast | [Read, tstamp] 〉;

upon event 〈 bebDeliver | pj ,[Read, ts] 〉 do
if rts ≥ ts or wts ≥ ts then

trigger 〈 pp2pSend | pj , [Nack] 〉;
else

rts := ts;
trigger 〈 pp2pSend | pj , [ReadAck, wts, val] 〉;

upon event 〈 pp2pDeliver | pj , [Nack] 〉 do
trigger 〈 acReturn | ⊥ 〉;

upon event 〈 p2pDeliver | pj , [ReadAck, ts, v] 〉 do
readSet := readSet ∪ {(ts, v)}

upon (|readSet| > N/2) do
(ts, v) := highest(readSet);
if v �= ⊥ then tempValue := v;
trigger 〈 bebBroadcast | [Write, tstamp, tempValue] 〉;

Performance. Every propose operation requires two communication round-
trips between the process that is proposing a value and a majority of the
processes (four communication steps). Hence, at most 4N messages are ex-
changed.

Variant. It is easy to see how our abortable consensus algorithm can be
transformed to alleviate the need for a majority of the correct processes
if a perfect failure detector is available (i.e., in a fail-stop model). Roughly
speaking, instead of relying on a majority to read and write a value, a process
would do so at all processes that it did not suspect to have crashed. Later in
this chapter, we will give an algorithm that implements abortable consensus
in a fail-recovery model.

204 5. Consensus

Algorithm 5.6 RW Abortable Consensus: Write Phase

Implements:
Abortable Consensus (ac).

upon event 〈 bebDeliver | pj , [Write, ts, v] 〉 do
if rts > ts or wts > ts then

trigger 〈 pp2pSend | pj ,[Nack] 〉;
else

val := v;
wts := ts;
trigger 〈 pp2pSend | pj , [WriteAck] 〉;

upon event 〈 pp2pDeliver | pj , [Nack] 〉 do
trigger 〈 acReturn | ⊥ 〉;

upon event 〈 pp2pDeliver | pj , [WriteAck] 〉 do
wAcks := wAcks+1;

upon (wAcks > N/2) do
readSet := ∅;
wAcks := 0;
trigger 〈 acReturn | tempValue 〉;

5.3.4 Fail-Noisy Algorithm: From Abortable Consensus to
Consensus

Algorithm 5.7 implements uniform consensus. It uses, besides an eventual
leader election abstraction and a best-effort broadcast communication ab-
straction, abortable consensus.

Intuitively, the value that is decided in the consensus algorithm is the
value that is decided in the underlying abortable consensus. Two processes
that concurrently propose values to abortable consensus might abort. If only
one process keeps proposing for sufficiently long, however, this process will
succeed. This will be ensured in our algorithm by having only leaders propose
values. Eventually, only one leader is elected and this leader will be able
to successfully propose and decide a value. Once this is done, the leader
broadcasts a message to all processes informing them of the decision.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions.

Consider termination and assume some process is correct. According to
the algorithm, only a process that is leader can propose a value to abortable
consensus. Due to the assumption of the underlying eventually perfect leader
election, there is a time after which exactly one correct process is eventually
elected and remains leader forever. Let pi be that process. Process pi will
permanently keep on proposing values. Due to the properties of abortable
consensus, pi will decide and broadcast the decision. Due to the properties

5.3 Abortable Consensus 205

Algorithm 5.7 From Abortable Consensus to Consensus

Implements:
UniformConsensus (uc).

Uses:
AbortableConsensus (ac);
BestEffortBroadcast (beb);
EventualLeaderDetector (Ω).

upon event 〈 Init 〉 do
proposal := ⊥;
leader := proposed := decided := false;

upon event 〈 trust | pi 〉 do
if pi = self then leader := true;
else leader := false;

upon event 〈 ucPropose | v 〉 do
proposal := v;

upon (leader = true) ∧ (proposed = false) ∧ (proposal �= ⊥) do
proposed := true;
trigger 〈 acPropose | proposal 〉;

upon event 〈 acReturn | result 〉 do
if result �= ⊥ then

trigger 〈 bebBroadcast | [Decided, result] 〉;
else

proposed := false;

upon event 〈 bebDeliver | pi, [Decided, v] 〉 ∧ (decided = false) do
decided := true;
trigger 〈 ucDecide | v 〉;

of the best-effort communication primitive, all correct processes eventually
deliver the decision message and decide.

Consider now agreement and assume that some process pi decides some
value v. This means that v was decided in the underlying abortable consensus.
Duw to the properties of abortable consensus, no other process can decide
any different value. Any other process pj that decides, necessarily decides v.

Performance. We consider here our implementation of abortable consensus
assuming a majority of the correct processes. If there is a single leader and
this leader does not crash, then four communication steps and 4N messages
are needed for this leader to decide. Therefore, five communication steps and
5N messages are needed for all correct processes to decide.

206 5. Consensus

Module 5.4 Interface and properties of logged abortable consensus

Module:

Name: Logged Abortable Consensus (lac).

Events:

Request: 〈 lacPropose | v 〉: Used to propose a value v.

Indication: 〈 lacReturn | x 〉: Used to return x, either a decision value or
⊥, as a response to the proposition.

Properties:

LAC1: Termination: If a process proposes and does not crash, it eventu-
ally decides or aborts.

LAC2: Decision: If a single correct process proposes infinitely often, it
eventually decides.

LAC3: Agreement: No two processes decide differently.

LAC4: Validity: Any value decided must have been proposed.

Module 5.5 Interface and properties of logged consensus

Module:

Name: LoggedConsensus (lc).

Events:

Request: 〈 lcPropose | v 〉: Used to propose a value for logged consensus.

Indication: 〈 lcDecide | v 〉: Used to indicate the decided value for logged
consensus.

Properties:

C1: Termination: Unless it crashes, every process eventually decides some
value.

C2: Validity: If a process decides v, then v was proposed by some process.

C3: Agreement: No two processes decide differently.

5.4 Logged Abortable Consensus and Logged Consensus

We consider here the fail-recovery model and we introduce the abortable
logged consensus and logged abortable consensus abstractions in Module 5.4
and Module 5.5, respectively.

5.4.1 Fail-Recovery Algorithm: Logged Abortable Consensus

We give now an algorithm that implements logged abortable consensus. The
algorithm we describe here is also composed of two parts (as in the fail-silent
model): Algorithm 5.8 and Algorithm 5.9, which are similar to Algorithm 5.5
and Algorithm 5.6, respectively, with three major differences.

5.4 Logged Abortable Consensus and Logged Consensus 207

Algorithm 5.8 RW Logged Abortable Consensus: read phase

Implements:
LoggedAbortableConsensus (lac).

Uses:
StubbornBroadcast (sb);
StubbornPointToPointLinks (sp2p).

upon event 〈 Init 〉 do
tempValue := val := ⊥;
wAcks := tstamp := rts := wts := 0;
readSet := ∅;

upon event 〈 Recovery 〉 do
retrieve(rts, wts, val);

upon event 〈 lacPropose | v 〉 do
tstamp := tstamp+N ;
tempValue := v;
trigger 〈 sbBroadcast | [Read, tstamp] 〉;

upon event 〈 sbDeliver | pj , [Read, ts] 〉 do
if rts ≥ ts or wts ≥ ts then

trigger 〈 sp2pSend | pj , [Nack] 〉;
else

rts := ts; store(rts);
trigger 〈 sp2pSend | pj , [ReadAck, wts, val] 〉;

upon event 〈 sp2pDeliver | pj , [Nack] 〉 do
trigger 〈 lacReturn | ⊥ 〉;

upon event 〈 sp2pDeliver | pj , [ReadAck, ts,v] 〉 do
readSet := readSet ∪ {(ts, v)}

upon (|readSet| > N/2) do
(ts, v) := highest(readSet);
if v �= ⊥ then tempValue := v;
trigger 〈 sbBroadcast | [Write, tstamp, tempValue] 〉;

1. We use stubborn links and stubborn broadcast instead of perfect links
and best-effort broadcast.

2. We also assume a majority of the correct processes; remember however
that the notion of correct is different in a fail-recovery model: a process
is said to be correct in this case if eventually it is permanently up.

3. The updates of the timestamps and estimate values are now logs, i.e., on
stable storage. The timestamps and estimate values are retreived upon
recovery.

208 5. Consensus

Algorithm 5.9 RW Logged Abortable Consensus: write phase

Implements:
LoggedAbortableConsensus (lac).

upon event 〈 sbDeliver | pj ,[Write, ts,v] 〉 do
if rts > ts or wts > ts then

trigger 〈 sp2pSend | pj , [Nack] 〉;
else

val := v; wts := ts; store(val, wts);
trigger 〈 sp2pSend | pj , [WriteAck] 〉;

upon event 〈 sp2pDeliver | pj , [Nack] 〉 do
trigger 〈 lacReturn | ⊥ 〉;

upon event 〈 sp2pDeliver | pj , [WriteAck] 〉 do
wAcks := wAcks+1;

upon (wAcks > N/2) do
readSet := ∅; wAcks := 0;
trigger 〈 lacReturn | tempValue 〉;

Interestingly, assuming a logged abortable consensus instead of abortable
consensus, Algorithm 5.7 directly implements logged consensus (instead of
uniform consensus).

5.5 Randomized Consensus

In this section, we discuss how randomization can be used to solve a prob-
abilistic variant of consensus without resorting to a failure detector. This
variant of consensus, which we call randomized consensus, ensures integrity,
(uniform) agreement, and validity properties of (uniform) consensus, plus the
termination properties which stipulates that, with probability 1, every correct
process eventually decides.

5.5.1 Specification

Each process has an initial value that it proposes through the primitive rcPro-
pose (we simply write propose when there is no confusion). All correct pro-
cesses have to decide on a single value that has to be one of the proposed
values: the decision primitive is denoted by rcDecide) (we simply write decide
when there is no confusion). Randomized consensus ensures the properties
RC1–RC4 listed in Module 5.6.

5.5 Randomized Consensus 209

Module 5.6 Interface and properties of probabilistic consensus

Module:

Name: RandomizedConsensus (rc).

Events:

Request: 〈 rcPropose | v 〉: Used to propose a value for consensus.

Indication: 〈 rcDecide | v 〉: Used to indicate the decided value for con-
sensus.

Properties:

RC1: Termination: With probability 1, every correct process decides some
value.

RC2: Validity: If a process decides v, then v was proposed by some process.

RC3: Integrity: No process decides twice.

RC4: Agreement: No two correct processes decide differently.

5.5.2 Randomized Algorithm: Probabilistic Consensus

The randomized consensus algorithm described here operates in (asyn-
chronous) rounds where, in each round, the processes try to ensure that
the same value is proposed by a majority of the processes. If there is no such
value, the processes use randomization to select which of the initial values
they will propose in the next round. The probability that processes agree in a
given round is strictly greater than zero. Therefore, if the algorithm continues
to execute rounds, eventually it terminates with probability 1.

Algorithm 5.10–5.11 is randomized and requires a majority of the correct
processes to make progress. Initially, each process uses reliable broadcast to
disseminate its own initial value to every other correct process. Therefore,
eventually, all correct processes will have all initial values from every other
correct process.

As we pointed out, the algorithm operates in rounds. Each round consists
of two phases. In the first phase every correct process proposes a value. If
a process observes that a majority of the processes have proposed the same
value in the first phase, then it proposes that value for the second phase. If a
process is unable to observe a majority of proposals for the same value in the
first phase, the process simply proposes ⊥ for the second phase. Note that,
as a result of this procedure, if two processes propose a value (different from
⊥) for the second phase, they propose exactly the same value. Let this value
be called majph1.

The purpose of the second phase is to verify if majph1 was observed by a
majority of the processes. In this case, majph1 is the decided value. A process
that receives majph1 in the second phase but is unable to collect a majority
of majph1 in that phase, starts a new round with majph1 as its estimate.

210 5. Consensus

Algorithm 5.10 Probabilistic Consensus (phase 1)

Implements:
RandomizedConsensus (rc).

Uses:
ReliableBroadcast (rb);
BestEffortBroadcast (beb).

upon event 〈 Init 〉 do
decided := ⊥;
estimate := ⊥;
round := 0;
val := ∅;
forall r do

phase1[r] := ∅;
phase2[r] := ∅;

upon event 〈 rcPropose | v 〉 do
trigger 〈 bebBroadcast | [IniVal, v] 〉;
estimate := v;
round := round +1;
val := val ∪ {v};
trigger 〈 bebBroadcast | [Phase1, round, v] 〉;

upon event 〈 bebDeliver | pi, [IniVal, v] 〉 do
val:= val ∪ {v};

upon event 〈 bebDeliver | pi, [Phase1, r, v] 〉 do
phase1[r] := phase1[r] ∪ {v};

Finally, it is possible that a process does not receive majph1 in the second
phase (either because no such value was found in phase 1 or simply because
it has received a majority of ⊥ in the second phase). In this case, the process
has to start a new round, with a new estimate. To ensure that there is some
probability of obtaining a majority in the new round, the process selects,
at random, one of the initial values it has seen, and uses this value as its
proposal for the first phase of the next round.

Figure 5.3 illustrates the idea underlying the algorithm. At first glance,
it may seem that a deterministic decision would allow a majority in the first
phase to be reached faster. For instance, if a process would receive a majority
of ⊥ in the second phase of a round, it could deterministically select the first
non-⊥ initial value instead of selecting a value at random. Unfortunately, a
deterministic choice allows executions where the algorithm never terminates.

In the example of Figure 5.3, we have three processes, p1, p2 and p3, with
initial values of 1, 2, and 2, respectively. Each process proposes its own value
for the first phase of the round. Consider the following execution for the first
phase:

5.5 Randomized Consensus 211

Algorithm 5.11 Probabilistic Consensus (phase 2)

upon (decided = ⊥ ∧ |phase1[round]| > N/2) do
if exists v such that ∀x ∈ phase1[round]: x = v then estimate := v;
else estimate := ⊥;
trigger 〈 bebBroadcast | [Phase2, round, estimate] 〉;

upon event 〈 bebDeliver | pi, [Phase2, r, v] 〉 do
phase2[r] := phase2[r] ∪ {v};

upon (decided = ⊥ ∧ |phase2[round]| > N/2) do
if exists v �= ⊥ such that ∀x ∈ phase2[round]: x = v then

decided := v;
trigger 〈 rbBroadcast | [Decided, round, decided] 〉;

else
if exists v ∈ phase2[round] such that v �= ⊥ then estimate := v;
else estimate := random(val);
round := round +1; // start one more round
trigger 〈 rbBroadcast | [Phase1, round, estimate] 〉;

upon event 〈 rbDeliver | pi, [Decided, r, v] 〉 do
decided := v;
trigger 〈 rcDecide | decided 〉;

cPropose (1)

cPropose (2)

cPropose (2)

p3

p2

p1

(1)

(2)

(2)(2)

(⊥)

(⊥)

phase 1 phase 2

round 1

(1)

(2)

(2)

Fig. 5.3: Role of randomization

• Process p1 receives the value from p2. Since both values differ, p1 proposes
⊥ for the second phase.

• Process p2 receives the value from p1. Since both values differ, p2 proposes
⊥ for the second phase.

• Process p3 receives the value from p2. Since both values are the same, p3

proposes 2 for the second phase.

Now consider the following execution for the second phase:

• Process p1 receives the value from p2. Since both values are ⊥, p1 deter-
ministically selects value 1 for the first phase of the next round.

212 5. Consensus

• Process p2 receives the value from p3. Since one of the values is 2, p2

proposes 2 for the first phase of the next round.
• Process p3 receives the value from p2. Since one of the values is 2, p3

proposes 2 for the first phase of the next round.

This execution is clearly possible. Note that in this example no messages
is lost; some messages are delayed as processes move to the next round as
soon as they receive a majority of messages. Unfortunately, the result of this
execution is that the input values for the next round are exactly the same
as for the previous round. The same execution sequence could be repeated
indefinitely. Randomization prevents this infinite executions from occurring
since there would be a round where p1 would also propose 2 as the input
value for the next round.

5.6 Hands-On

5.6.1 Flooding Regular Consensus Protocol

The communication stacks used to implement the regular flooding consensus
protocol is depicted in the following:

Application
Consensus

(implemented by Flooding Consensus)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The FloodingConsensus layer implements the flooding consensus algorithm.
It follows Algorithm 5.1 very closely. It operates in rounds, and in each round
it tries to gather the proposals from all correct members. This is achieved
by each member sending all the proposals he knows. If a member fails, it
advances to the next round. If in a round it gathers messages from all other
correct processes, it decides by choosing in a deterministic way. In the im-
plementation, all proposals must derive from the Proposal class, which forces
the proposals to implement the int compareTo(Object o) method that allows
comparison between proposals. The implemented algorithm chooses the low-
est proposal. For instance, the proposal sent by the test application consists
of a String, and therefore the algorithm chooses the one with the lowest lex-
icographical value. When the decision is made, it is also broadcasted by all
members.

The protocol implementation is depicted in Listing 5.1.

5.6 Hands-On 213

Listing 5.1. Flooding Regular Consensus implementation

package appia.protocols.tutorialDA.floodingConsensus;

public class FloodingConsensusSession extends Session {

public FloodingConsensusSession(Layer layer) {
super(layer);

}

private int round=0;
private ProcessSet correct=null;
private Comparable decided=null;
private HashSet[] correct this round=null;
private HashSet[] proposal set=null;

public void handle(Event event) {
if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)event);
else if (event instanceof Crash)

handleCrash((Crash)event);
else if (event instanceof ConsensusPropose)

handleConsensusPropose((ConsensusPropose)event);
else if (event instanceof MySetEvent)

handleMySet((MySetEvent)event);
else if (event instanceof DecidedEvent)

handleDecided((DecidedEvent)event);
else {

event.go();
}

}

private void init() {
int max rounds=correct.getSize()+1;
correct this round=new HashSet[max rounds];
proposal set=new HashSet[max rounds];
int i ;
for (i=0 ; i < max rounds ; i++) {

correct this round [i]=new HashSet();
proposal set [i]=new HashSet();

}
for (i=0 ; i < correct.getSize () ; i++) {

SampleProcess p=correct.getProcess(i);
if (p.isCorrect ())

correct this round [0]. add(p);
}
round=1;
decided=null;

count decided=0;
}

private void handleProcessInit(ProcessInitEvent event) {
correct=event.getProcessSet();
init ();
event.go();

}

private void handleCrash(Crash crash) {
correct .setCorrect(crash.getCrashedProcess(),false);
crash.go();

decide(crash.getChannel());
}

private void handleConsensusPropose(ConsensusPropose propose) {
proposal set [round].add(propose.value);

214 5. Consensus

MySetEvent ev=new MySetEvent(propose.getChannel(),Direction.DOWN,this);
ev.getExtendedMessage().pushObject(proposal set[round]);
ev.getExtendedMessage().pushInt(round);
ev.go();

decide(propose.getChannel());
}

private void handleMySet(MySetEvent event) {
SampleProcess p i=correct.getProcess((InetWithPort)event.source);
int r=event.getExtendedMessage().popInt();
HashSet set=(HashSet)event.getExtendedMessage().popObject();

correct this round [r]. add(p i);
proposal set [r]. addAll(set);

decide(event.getChannel());
}

private void decide(Channel channel) {
int i ;

if (decided != null)
return;

for (i=0 ; i < correct.getSize () ; i++) {
SampleProcess p=correct.getProcess(i);
if ((p != null) && p.isCorrect() && !correct this round[round].contains(p))

return;
}

if (correct this round [round].equals(correct this round [round−1])) {
Iterator iter=proposal set[round]. iterator ();
while (iter .hasNext()) {

Comparable proposal=(Comparable)iter.next();
if (decided == null)

decided=proposal;
else

if (proposal.compareTo(decided) < 0)
decided=proposal;

}

ConsensusDecide ev=new ConsensusDecide(channel,Direction.UP,this);
ev.decision=(Proposal)decided;
ev.go();

DecidedEvent ev=new DecidedEvent(channel,Direction.DOWN,this);
ev.getExtendedMessage().pushObject(decided);
ev.go();

} else {
round++;
proposal set [round].addAll(proposal set[round−1]);

MySetEvent ev=new MySetEvent(channel,Direction.DOWN,this);
ev.getExtendedMessage().pushObject(proposal set[round]);
ev.getExtendedMessage().pushInt(round);
ev.go();

count decided=0;
}

}

private void handleDecided(DecidedEvent event) {
// Counts the number os Decided messages received and reinitiates the algorithm
if ((++count decided >= correctSize()) && (decided != null)) {

5.6 Hands-On 215

init ();
return;

}

if (decided != null)
return;

SampleProcess p i=correct.getProcess((InetWithPort)event.source);
if (! p i . isCorrect ())

return;

decided=(Comparable)event.getExtendedMessage().popObject();

ConsensusDecide ev=new ConsensusDecide(event.getChannel(),Direction.UP,this);
ev.decision=(Proposal)decided;
ev.go();

DecidedEvent ev=new DecidedEvent(event.getChannel(),Direction.DOWN,this);
ev.getExtendedMessage().pushObject(decided);
ev.go();

round=0;
}

// Used to count the number of Decided messages received, therefore determining when
// all processes have decided and therefore allow a new decision process.
private int count decided;
private int correctSize() {

int size=0,i;
SampleProcess[] processes=correct.getAllProcesses();
for (i=0 ; i < processes.length ; i++) {

if ((processes[i] != null) && processes[i]. isCorrect())
++size;

}
return size;

}
}

Try It

1. Setup
a) Open three shells/command prompts.
b) In each shell, go to the directory where you have placed the supplied

code.
c) In each shell, launch the test application, SampleAppl, giving a dif-

ferent n value (0, 1, or 2) and specifying the qos as fc.
• In shell 0, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 0 \

-qos fc

• In shell 1, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

216 5. Consensus

-qos fc

• In shell 2, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 2 \

-qos fc

d) If the error NoClassDefError has appeared, confirm that you are at
the root of the supplied code.

e) Start the prefect failure detector by writing startpfd in each shell.
2. Run: Now that the processes are launched and running, let us try this

execution:

a) In shell 0, propose the value B (type consensus B and press Enter).
b) In shell 1, propose the value C (type consensus C and press Enter).
c) In shell 2, propose the value D (type consensus D and press Enter).
d) All processes display that a decision was made and that it is B.
e) Wait a while to ensure that all messages related to the last decision

are sent and received, and do not interfere with the next decision.
f) In shell 0, propose the value E.
g) In shell 1, propose the value F.
h) Note that a decision has not been made yet.
i) In shell 2, kill the test process.
j) The remaining processes display that a decision was made and that

it is E. When the failure notification reaches them they start another
round without the failed process.

5.6.2 Hierarchical Regular Consensus Protocol

The communication stacks used to implement the regular hierarchical con-
sensus protocol is depicted in the following:

Application
Consensus

(implemented by Hierarchical Consensus)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The HierarchicalConsensus layer implements the hierarchical consensus
algorithm. It follows Algorithm 5.2 very closely. It also operates in rounds,
and in each round one of the members chooses a proposal, either the one

5.6 Hands-On 217

chosen in the previous round, if such a choice was made, or is own proposal.
The process that chooses in each round is the one with its rank equal to the
round. For this reason the first round is round 0. The protocol implementation
is depicted in Listing 5.2.

Listing 5.2. Hierarchical Regular Consensus implementation

package appia.protocols.tutorialDA.hierarchicalConsensus;

public class HierarchicalConsensusSession extends Session {

public HierarchicalConsensusSession(Layer layer) {
super(layer);

}

private int round=−1;
private int prop round=−1;
private ProcessSet processes=null;
private HashSet suspected=new HashSet();
private boolean[] broadcast=null;
private boolean[] delivered=null;
private Comparable proposal=null;

public void handle(Event event) {
if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)event);
else if (event instanceof Crash)

handleCrash((Crash)event);
else if (event instanceof ConsensusPropose)

handleConsensusPropose((ConsensusPropose)event);
else if (event instanceof DecidedEvent)

handleDecided((DecidedEvent)event);
else {

event.go();
}

}

private void init() {
int max rounds=processes.getSize();

//suspected
round=0;
proposal=null;
prop round=−1;

delivered=new boolean[max rounds];
Arrays. fill (delivered , false);
broadcast=new boolean[max rounds];
Arrays. fill (broadcast,false);

}

private void handleProcessInit(ProcessInitEvent event) {
processes=event.getProcessSet();
init ();
event.go();

}

private void handleCrash(Crash crash) {
processes.setCorrect(crash.getCrashedProcess(),false);
suspected.add(new Integer(crash.getCrashedProcess()));
crash.go();

suspected or delivered ();
decide(crash.getChannel());

}

218 5. Consensus

private void handleConsensusPropose(ConsensusPropose propose) {
if (proposal != null)

return;

proposal=propose.value;

decide(propose.getChannel());
}

private void decide(Channel channel) {
if (broadcast[round])

return;
if (proposal == null)

return;
if (round != processes.getSelfRank())

return;

broadcast[round]=true;
ConsensusDecide ev=new ConsensusDecide(channel,Direction.UP,this);
ev.decision=(Proposal)proposal;
ev.go();

DecidedEvent ev=new DecidedEvent(channel,Direction.DOWN,this);
ev.getExtendedMessage().pushObject(proposal);
ev.getExtendedMessage().pushInt(round);
ev.go();

}

private void suspected or delivered() {
if (suspected.contains(new Integer(round)) || delivered[round])

round++;

if (round >= delivered.length) {
init ();

}
}

private void handleDecided(DecidedEvent event) {
SampleProcess p i=processes.getProcess((InetWithPort)event.source);
int r=event.getExtendedMessage().popInt();
Comparable v=(Comparable)event.getExtendedMessage().popObject();

if ((r < processes.getSelfRank()) && (r > prop round)) {
proposal=v;
prop round=r;

}
delivered [r]=true;

suspected or delivered ();
decide(event.getChannel());

}
}

Try It

1. Setup
a) Open three shells/command prompts.
b) In each shell, go to the directory where you have placed the supplied

code.
c) In each shell, launch the test application, SampleAppl, as with the

flooding algorithm, but specifying the qos as hc.

5.6 Hands-On 219

• In shell 0, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 0 \

-qos hc

• In shell 1, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

-qos hc

• In shell 2, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 2 \

-qos hc

d) If the error NoClassDefError has appeared, confirm that you are at
the root of the supplied code.

e) Start the prefect failure detector by typing startpfd in each shell.
2. Run: Now that the processes are launched and running, let us try this

execution:

a) In shell 0, propose the value B (type consensus B and press Enter).
b) Note that all processes decide B. Because the proposal came from

the process with the lowest rank, a decision is almost immediate.
c) In shell 2, propose the value G.
d) Note that no decision as yet been made.
e) In shell 1, propose the value H.
f) Again, note that no decision as yet been made.
g) In shell 0, propose the value I.
h) All processes decide I.
i) In shell 1, propose the value J.
j) No decision has yet been made.
k) In shell 0, kill the test process.
l) The remaining processes display that a decision was made and that

it is J. Because J was proposed by the living process with the lowest
rank, as soon as it is detected that all other processes with lower
ranks have failed, the proposal becomes a decision.

5.6.3 Flooding Uniform Consensus

The communication stack used to implement the flooding uniform consensus
protocol is depicted in the following:

220 5. Consensus

SampleAppl
Uniform Consensus

(implemented by Flooding UC)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-To-Point Links

(implemented by TcpBasedPerfectP2P)

The FloodingUniformConsensus implements the uniform flooding consen-
sus algorithm. It follows the Algorithm 5.3 very closely. Its main difference
when compared with the regular flooding algorithm is that it runs through
N rounds, N being the number of processes. Due to this, it is not neces-
sary to broadcast the decision. The protocol implementation is depicted in
Listing 5.3.

Listing 5.3. Flooding Uniform Consensus implementation

package appia.protocols.tutorialDA.floodingUniformConsensus;

public class FloodingUniformConsensusSession extends Session {
public FloodingUniformConsensusSession(Layer layer) {

super(layer);
}

private int round=−1;
private ProcessSet correct=null;
private Comparable decided=null;
private HashSet[] delivered=null;
private HashSet proposal set=null;

public void handle(Event event) {
if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)event);
else if (event instanceof Crash)

handleCrash((Crash)event);
else if (event instanceof ConsensusPropose)

handleConsensusPropose((ConsensusPropose)event);
else if (event instanceof MySetEvent)

handleMySet((MySetEvent)event);
else {

event.go();
}

}

private void init() {
int max rounds=correct.getSize();
delivered=new HashSet[max rounds];
proposal set=new HashSet();
int i ;
for (i=0 ; i < max rounds ; i++) {

delivered[i]=new HashSet();
}
round=0;
decided=null;

}

private void handleProcessInit(ProcessInitEvent event) {
correct=event.getProcessSet();

5.6 Hands-On 221

init ();
event.go();

}

private void handleCrash(Crash crash) {
correct .setCorrect(crash.getCrashedProcess(),false);
crash.go();

decide(crash.getChannel());
}

private void handleConsensusPropose(ConsensusPropose propose) {
proposal set .add(propose.value);

MySetEvent ev=new MySetEvent(propose.getChannel(),Direction.DOWN,this);
ev.getExtendedMessage().pushObject(proposal set);
ev.getExtendedMessage().pushInt(round);
ev.go();

}

private void handleMySet(MySetEvent event) {
SampleProcess p i=correct.getProcess((InetWithPort)event.source);
int r=event.getExtendedMessage().popInt();
HashSet newSet=(HashSet)event.getExtendedMessage().popObject();

proposal set .addAll(newSet);
delivered [r]. add(p i);

decide(event.getChannel());
}

private void decide(Channel channel) {
int i ;

if (decided != null)
return;

for (i=0 ; i < correct.getSize () ; i++) {
SampleProcess p=correct.getProcess(i);
if ((p != null) && p.isCorrect() && !delivered[round].contains(p))

return;
}

if (round == delivered.length−1) {
Iterator iter=proposal set. iterator ();
while (iter .hasNext()) {

Comparable proposal=(Comparable)iter.next();
if (decided == null)

decided=proposal;
else

if (proposal.compareTo(decided) < 0)
decided=proposal;

}

ConsensusDecide ev=new ConsensusDecide(channel,Direction.UP,this);
ev.decision=(Proposal)decided;
ev.go();

init ();
} else {

round++;

MySetEvent ev=new MySetEvent(channel,Direction.DOWN,this);
ev.getExtendedMessage().pushObject(proposal set);
ev.getExtendedMessage().pushInt(round);
ev.go();

222 5. Consensus

}
}

}

Try It The same executions suggested for flooding regular consensus can be
experimented with. Remember to specify the qos as ufc.

5.6.4 Hierarchical Uniform Consensus

The communication stack used to implement the uniform hierarchical con-
sensus protocol is depicted in the following:

Application
Uniform Consensus

(implemented by Hierarchical UC)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

This implementation uses two different Appia channels because it requires
best-effort broadcast and perfect point-to-point links, and each channel can
only offer one of those properties, despite the fact that best-effort broadcast
uses perfect point-to-point links. The HierarchicalUniformConsensus layer
implements the uniform hierarchical consensus algorithm. It follows Algo-
rithm 5.4 very closely. The protocol implementation is depicted in Listing 5.4.

Listing 5.4. Hierarchical Uniform Consensus implementation

package appia.protocols.tutorialDA.hierarchicalUniformConsensus;

public class HierarchicalUniformConsensusSession extends Session {
public HierarchicalUniformConsensusSession(Layer layer) {

super(layer);
}

private Comparable proposal=null;
private Comparable decided=null;
private int round=−1;
private HashSet suspected=new HashSet();
private HashSet ack set=new HashSet();
private int prop round=−1;
private ProcessSet processes=null;

private Channel mainchannel=null;
private Channel rbchannel=null;
private Channel rbinit=null;

public void handle(Event event) {
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit)event);
else if (event instanceof ProcessInitEvent)

5.6 Hands-On 223

handleProcessInit((ProcessInitEvent)event);
else if (event instanceof Crash)

handleCrash((Crash)event);
else if (event instanceof ConsensusPropose)

handleConsensusPropose((ConsensusPropose)event);
else if (event instanceof ProposeEvent)

handleProposeEvent((ProposeEvent)event);
else if (event instanceof DecidedEvent)

handleDecided((DecidedEvent)event);
else {

event.go();
}

}

public void rbchannel(Channel c) {
rbinit=c;

}

private void handleChannelInit(ChannelInit init) {
if (mainchannel == null) {

mainchannel=init.getChannel();
rbinit . start ();

} else {
if (init .getChannel() == rbinit) {

rbchannel=init.getChannel();

if (processes != null) {
ProcessInitEvent ev=new ProcessInitEvent(rbchannel,Direction.DOWN,this);
ev.setProcessSet(processes);
ev.go();

} catch (AppiaEventException ex) {
ex.printStackTrace();

}
}

}

init .go();
}

private void handleProcessInit(ProcessInitEvent event) {
processes=event.getProcessSet();
init ();
event.go();

if (rbchannel != null) {
ProcessInitEvent ev=new ProcessInitEvent(rbchannel,Direction.DOWN,this);
ev.setProcessSet(processes);
ev.go();

}
}

private void init() {
int max rounds=processes.getSize();

proposal=null;
decided=null;
round=0;
//suspected
ack set=new HashSet();
prop round=−1;

count decided=0;
}

private void handleCrash(Crash crash) {
processes.setCorrect(crash.getCrashedProcess(),false);

224 5. Consensus

suspected.add(new Integer(crash.getCrashedProcess()));

crash.go();

suspected or acked();
propose();
decide();

}

private void handleConsensusPropose(ConsensusPropose propose) {
if (proposal != null)

return;

proposal=propose.value;

propose();
}

private void propose() {
if (decided != null)

return;
if (proposal == null)

return;
if (round != processes.getSelfRank())

return;

ProposeEvent ev=new ProposeEvent(mainchannel,Direction.DOWN,this);
ev.getExtendedMessage().pushObject(proposal);
ev.getExtendedMessage().pushInt(round);
ev.go();

}

private void handleProposeEvent(ProposeEvent event) {
int p i rank=processes.getRank((InetWithPort)event.source);
int r=event.getExtendedMessage().popInt();
Comparable v=(Comparable)event.getExtendedMessage().popObject();

ack set .add(new Integer(p i rank));
if ((r < processes.getSelfRank()) && (r > prop round)) {

proposal=v;
prop round=r;

}

suspected or acked();
propose();
decide();

}

private void suspected or acked() {
if (suspected.contains(new Integer(round)) || ack set .contains(new Integer(round)))

round++;
}

private void decide() {
int i ;
for (i=0 ; i < processes.getSize () ; i++) {

int p i rank=processes.getProcess(i).getProcessNumber();
if (! suspected.contains(new Integer(p i rank)) &&

!ack set .contains(new Integer(p i rank))) {
return;

}
}

DecidedEvent ev=new DecidedEvent(rbchannel,Direction.DOWN,this);
ev.getExtendedMessage().pushObject(proposal);
ev.go();

5.7 Exercises 225

}

private void handleDecided(DecidedEvent event) {
// Counts the number os Decided messages received and reinitiates the algorithm
if ((++count decided >= correctSize()) && (decided != null)) {

init ();
return;

}

if (decided != null)
return;

decided=(Comparable)event.getExtendedMessage().popObject();

ConsensusDecide ev=new ConsensusDecide(mainchannel,Direction.UP,this);
ev.decision=(Proposal)decided;
ev.go();

}

// Used to count the number of Decided messages received, therefore determining when
// all processes have decided and therefore allow a new decision process.
private int count decided;
private int correctSize() {

int size=0,i;
for (i=0 ; i < processes.getSize () ; i++) {

if ((processes.getProcess(i) != null) && processes.getProcess(i). isCorrect ())
++size;

}
return size;

}
}

Try It The same executions suggested for hierarchical regular consensus can
be experimented with. Remember to specify the qos as uhc.

5.7 Exercises

Exercise 5.1 Improve our “Hierarchical Consensus” algorithm to save one
communication step. The “Hierarchical Consensus” algorithm we presented
requires N communication steps for all correct processes to decide. By a slight
modification, it can run in N − 1 steps: suggest such a modification.

Exercise 5.2 Explain why none of our regular consensus algorithms (“Hi-
erarchical Consensus”and “Flooding Consensus”) ensure uniform consensus.

Exercise 5.3 Can we optimize our “Flooding Uniform Consensus” algo-
rithm to save one communication step, i.e., such that all correct processes
always decide after N − 1 communication steps? Consider simply the case of
a system of two processes.

Exercise 5.4 What would happen in our “Flooding Uniform Consensus” al-
gorithm if

226 5. Consensus

1. we did not use set[round] but directly updated proposedSet in upon

event bebDeliver?
2. we accepted any bebDeliver event, even if pi /∈ correct?

Exercise 5.5 Consider all our fail-stop consensus algorithms (“Hierarchical
(Uniform) Consensus”and “Flooding (Uniform) Consensus”). Explain why
none of those algorithms would be correct if the failure detector turns out not
to be perfect.

Exercise 5.6 Explain why any fail-noisy consensus algorithm actually solves
uniform consensus.

Exercise 5.7 Explain why any fail-noisy consensus (or abortable consensus)
algorithm requires a majority of the correct processes.

Exercise 5.8 Give a fail-noisy consensus algorithm that assumes a correct
majority of the processes and uses an eventually perfect failure detector ab-
straction in such a way that (1) in any execution where p1 is never suspected,
it imposes its proposed value as the consensus decision, (2) in any execution
where p1 crashes initially and p2 is never suspected, p2 imposes its proposal,
..., (k) if p1, p2, ... pk all initially crash, then pk+1 imposes its proposal if it
is not suspected;and so on.

Exercise 5.9 Give a fail-recovery logged consensus algorithm which uses the
eventual leader detector and ensures the following property: if p1 does not
crash and is the only leader from the beginning of the execution, only three
communication steps, 3N messages, and one log at each process of a majority
is needed for all correct processes to decide.

5.8 Solutions

Solution 5.1 The last process (pN) does not need to broadcast its mes-
sage. Indeed, the only process that uses pN ’s broadcast value is pN itself, and
pN decides its proposal just before it broadcasts it (not when it delivers it). �

Solution 5.2 Consider first our “Flooding Consensus” algorithm and the
scenario of Figure 5.1. Assume that p1’s message has reached only p2. At the
end of the first round, p2 has not detected any process to have crashed and
can thus decide 3. However, if p2 crashes after deciding 3, p3 and p4 might
decide 5.

Now consider our “Hierarchical Consensus” algorithm and the scenario of
Figure 5.2. In the case where p1 decides and crashes, and no other process

5.8 Solutions 227

sees p1’s proposal (i.e., 3), then p1 decides differently from the other pro-
cesses. �

Solution 5.3 In the case of two processes, our “Flooding Uniform Consensus”
needs two communication steps. We argue here that a decision cannot be
reached by al correct processes after simply one step. (The interested reader
will extend this argument beyond this case to the general case of any N .)

Consider a system made of two processes, p1 and p2. We exhibit an exe-
cution where the processes do not reach uniform agreement after one round;
thus they need at least two rounds. More precisely, consider the execution
where p1 and p2 propose two different values, respectively, v1 and v2. With-
out loss of generality, assume that v1 < v2. We shall consider the following
execution, where p1 is faulty.

During round 1, p1 and p2 send their message to each other. Process p1

receives its own value and p2’s message (p2 is correct), and decides. Assume
that p1 decides its own value v1, which is different from p2’s value, and then
crashes. Now, assume that the message p1 sent to p2 in round 1 is arbitrarily
delayed. There is a time after which p2 permanently suspects p1 because of
the completeness property of the perfect failure detector. As p2 does not know
that p1 did send a message, p2 decides at the end of round 1 on its own value
v2. Hence the violation of uniform agreement.

Note that if we allow processes to decide only after two rounds, the above
scenario does not occur. This is because p1 crashes before deciding (i.e., it
never decides), and, later on, p2 decides v2. �

Solution 5.4 Consider a variant of our “Flooding Uniform Consensus” where
we would not use set[round] but directly update proposedSet in upon event
bebDeliver. The resulting algorithm would also be correct. In this algorithm,
the processes would also need to execute N rounds before deciding. Thus,
unless all processes crash, there exists a round r during which no process
crashes. This is because, at each round, every process broadcasts the values
it knows from the previous rounds. After executing round r, all processes
that have not crashed know exactly the same information. If we now update
proposedSet before the beginning of the next round (and, in particular, before
the beginning of round r), the processes will still have the information on
time. In short, the fact they get the information earlier is not a problem
since they must execute N rounds anyway.

Consider now a variant of our “Flooding Uniform Consensus” where would
accept any bebDeliver event, even if pi /∈ correct. The resulting algorithm
would be wrong. In the following, we exhibit an execution that leads to dis-
agreement. More precisely, consider a system made of three processes, p1,
p2, and p3. The processes propose 0, 1, and 1, respectively. During the first
round, the messages of p1 are delayed, and p2 and p3 never see them. Process
p1 crashes at the end of round 2, but p2 still sees p1’s round 2 message (the

228 5. Consensus

set {0, 1}) in round 2). Process p3 does not receive p1’s message in round 2,
though. In round 3, the message from p2 to p3 (the set {0, 1}) is delayed and
process p2 crashes at the end of round 3, so that p3 never sees p2’s message.
Before crashing, p2 decides on value 0, whereas p3 decides on 1. Hence the
disagreement. �

Solution 5.5 In all our fail-stop algorithms, there is at least one critical
point where a process p waits to deliver a message from a process q or to
detect the crash of process q. Should q crash and p never detect the crash of
q, p would remain blocked forever and never decide. In short, in any of our
algorithms using a perfect failure detector, a violation of strong completeness
could lead to the violation of the termination property of consensus.

Consider now strong accuracy. Consider, for instance, our “Flooding Con-
sensus” algorithm and the scenario of Figure 5.1: if p2 crashes after deciding
3, and p1 is falsely suspected to have crashed by p3 and p4, then p3 and p4

will decide 5. A similar scenario can occur for “Hierarchical Consensus.” �

Solution 5.6 Consider any fail-noisy consensus algorithm that implements
consensus but not uniform consensus. This means that there is an execution
where two processes pi and pj decide differently and one of them crashes:
the algorithm violates uniform agreement. Assume that process pi crashes.
With an eventually perfect failure detector, it might be the case that pi has
not crashed but is falsely suspected to have crashed by all other processes.
Process pj would decide the same as in the previous execution, and the algo-
rithm would even violate (non-uniform) agreement. �

Solution 5.7 We explain this for the case of a system of four processes
{p1, p2, p3, p4}. Assume by contradiction that there is a fail-noisy consensus
algorithm that tolerates the crash of two processes. Assume that p1 and p2

propose a value v whereas p3 and p4 propose a different value v′. Consider
an execution E1 where p1 and p2 crash initially: in this execution, p3 and
p4 decide v′ to respect the validity property of consensus. Consider also an
execution E2 where p3 and p4 crash initially: in this scenario, p1 and p2

decide v. With an eventually perfect failure detector, a third execution E3 is
possible: the one where no process crashes, p1 and p2 falsely suspect p3 and
p4, and p3 and p4 falsely suspect p1 and p2. In this execution, E3, p1 and p2

decide v, just as in execution E1 (they execute the same steps as in E1, and
cannot distinguish E3 from E1 up to the decision point), whereas p3 and p4

decide v′, just as in execution E2 (they execute the same steps as in E2, and
cannot distinguish E3 from E2 up to the decision point). Agreement would
hence be violated.

A similar argument applies to abortable consensus. �

5.8 Solutions 229

Solution 5.8 It is first important to note that, in Algorithm 5.7, the process
that imposes its proposal is the one chosen by the eventual leader detector
abstraction. We give here a “Rotating Coordinator” algorithm where if p1, p2,
... pk all initially crash, then pk +1 imposes its proposal if it is not suspected.

The “Rotating Coordinator” algorithm we give here is round-based and
the processes play two roles: the role of a leader, described in Algorithm 5.12,
and the role of a witness, described in Algorithm 5.13. Every process goes
sequentially from round i to round i + 1: no process ever jumps from one
round k to another round k′ < k + 1. Every round has a leader determined a
priori: the leader of round i is process p(i−1) mod (N+1), e.g., p2 is the leader
of rounds 2, N + 2, 2N + 2, and so on.

The process that is the leader in a round computes a new proposal and
tries to impose that proposal on all processes; every process that gets the
proposal from the current leader adopts this proposal and assigns it the cur-
rent round number as a timestamp. Then it acknowledges that proposal back
to the leader. If the leader gets a majority of acknowledgments, it decides
and disseminates that decision using a reliable broadcast abstraction.

There is a critical point where processes need the input of their failure
detector in every round. When the processes are waiting for a proposal from
the leader of that round, the processes should not wait indefinitely if the
leader has crashed without having broadcast its proposal. In this case, the
processes consult their failure detector module to get a hint on whether the
leader process has crashed.

Given that an eventually perfect detector ensures that, every crashed
process is eventually permanently suspected by every correct process, the
process that is waiting for a crashed leader will eventually suspect it. In this
case, the process sends a specific message Nack to the leader, and then moves
to the next round. In fact, a leader that is waiting for acknowledgments might
get some Nacks (if some processes falsely suspected it); in this case, the leader
moves to the next round without deciding.

Note also that processes after acknowledging a proposal move to the next
round directly: they do not need to wait for a decision. They might deliver
the decision through the reliable broadcast dissemination phase. In that case,
they will simply stop their algorithm.

Correctness. Validity and integrity follow from the algorithm and the prop-
erties of the underlying communication abstractions. Consider termination.
If some correct process decides, it decides through the reliable broadcast ab-
straction, i.e., by rbDelivering a decision message. Due to the properties of
this broadcast abstraction, every correct process rbDelivers the decision mes-
sage and decides. Assume by contradiction that there is at least one correct
process and no correct process decides. Consider the time t after which all
faulty processes crashed, all faulty processes are suspected by every correct
process, forever and no correct process is ever suspected. Let pi be the first
correct process that is the leader after time t and let r denote the round at

230 5. Consensus

Algorithm 5.12 Rotating Coordinator: leader role

Uses:
PerfectPointToPointLinks (pp2p);
ReliableBroadcast (rb);
BestEffortBroadcast (beb);
EventuallyPerfectFailureDetector (�P).

function leader (r) returns processid is
return pi: (rank(pi) = (r mod N + 1));

upon event 〈 Init 〉 do
round := 1; decided := ⊥;
(ts, proposal) := (⊥, ⊥);
suspected:= estimate-set[] := ack-set[] := nack-set[] := ∅;
forall r do estimate[r] := ack[r] := false; proposed[r] := ⊥

upon event 〈 ucPropose | v 〉 ∧ proposal �= ⊥ do
(ts, proposal) := (0, v);

upon event 〈 pp2pDeliver | pi, [Estimate, r, e] 〉 do
estimate-set[r] := estimate-set[r] ∪ {e};

upon (leader(round)=self) ∧ (|estimate-set[round]| > N/2)) do
(ts, proposal) := highest(estimate-set[round]);
trigger 〈 bebBroadcast | [Propose, round, (round, proposal)] 〉;

upon event 〈 pp2pDeliver | pi, [Ack, r] 〉 do
ack-set[r] := ack-set[r] ∪ {pi};

upon event 〈 pp2pDeliver | pi, [Nack, r] 〉 do
nack-set[r] := nack-set[r] ∪ {pi};

upon (leader(round)=self) ∧ nack-set[round] �= ∅ do
round := round + 1;

upon (leader(round)=self) ∧ (|ack-set[round]| > N/2) do
trigger 〈 rbBroadcast | [Decide, proposal] 〉;

which that process is leader. If no process has decided, then all correct pro-
cesses reach round r, and pi eventually reaches a decision and rbBroadcasts
that decision.

Consider now agreement. Assume by contradiction any two rounds i and
j, where j is the closest integer to i such that j > i, and pi mod (N+1), and
pj mod (N+1), proposed two different decision values v and v′ respectively.
Process pj mod (N+1) must have adopted v before reaching round j. This
is because pj mod (N+1) selects the value with the largest timestamp and
pj mod (N+1) cannot miss the value of pi mod (N+1): any two majorities always

5.8 Solutions 231

Algorithm 5.13 Rotating Coordinator: witness role

upon event (proposal �= ⊥) ∧ (estimate[round] = false) do
estimate[round] := true;
trigger 〈 pp2pSend | leader(round), [Estimate, round, proposal] 〉;

upon event 〈 bebDeliver | pi, [Propose, r, (ts, v)] 〉 do
proposed[r] := (ts, v);

upon event (proposed[round]�= ⊥) ∧ (ack[round] = false) do
(ts, proposal) := proposed[round];
ack[round] := true;
trigger 〈 pp2pSend | leader(round), [Ack, round] 〉;
round := round + 1;

upon event (leader(round) ∈ suspected) ∧ (ack[round] = false) do
ack[round] := true;
trigger 〈 pp2pSend | leader(round), [Nack, round] 〉;
round := round + 1;

upon event 〈 rbDeliver | pi, [Decided, v] 〉 ∧ (decided = ⊥) do
decided := v;
trigger 〈 ucDecide | v 〉;

upon event 〈 suspect | pi 〉 do
suspected := suspected ∪ {pi};

upon event 〈 restore | pi 〉 do
suspected := suspected \ {pi};

intersect. Given that j is the closest integer to i such that some process
proposed v′ different from v, after v was proposed, we have a contradiction.

Performance. If no process fails or is suspected to have failed, then four com-
munication steps and 4N messages are required for all correct processes to
decide. �

Solution 5.9 The algorithm is a variant of our “Logged Consensus” algo-
rithm where the underlying logged abortable consensus abstraction is opened
for optimization purposes. In the case where p1 is initially elected leader, p1

directly tries to impose its decision, i.e., without consulting the other pro-
cesses. In a sense, it skips the read phase of the underlying logged abortable
consensus. This computation phase is actually only needed to make sure that
the leader will propose any value that might have been proposed. For the case
where p1 is initially the leader, p1 is sure that no decision has been made in
a previous round (there cannot be any previous round), and can save one
communication phase by directly making its own proposal. This also leads to
saving the first access to stable storage and one communication round-trip. �

232 5. Consensus

5.9 Historical Notes

• The consensus problem was defined in 1982 (Lamport, Shostak, and Pease
1982).

• It was proved in 1985 that consensus is impossible to solve with a determin-
istic algorithm in a fail-silent model even if only one process fails (Fischer,
Lynch, and Paterson 1985).

• Later on, in 1988, intermediate models between the synchronous and the
asynchronous model were introduced to circumvent the consensus impos-
sibility (Dwork, Lynch, and Stockmeyer 1988).

• The notion of failure detection was then considered an elegant way to
encapsulate partial synchrony assumptions (Chandra and Toueg 1996).

• The “Rotating Coordinator” fail-noisy consensus algorithm (presented in
the exercise section) was introduced in 1996 (Chandra and Toueg 1996)
whereas the “Abortable Consensus” based fail-noisy consensus algorithm
was introduced in 1989 in the context of the Paxos algorithm (Lam-
port 1989). The abortable consensus abstraction was made precise in
2003 (Boichat, Dutta, Frolund, and Guerraoui 2003a; Boichat, Dutta, Frol-
und, and Guerraoui 2003b).

• It was shown in 1996 (Chandra and Toueg 1996; Guerraoui 2000) that
any fail-noisy consensus algorithm (using an unreliable failure detector)
requires a majority of the correct processes.

• It was shown in 2000 (Guerraoui 2000) that any fail-noisy algorithm that
solves regular consensus also solves uniform consensus.

• The randomized consensus algorithm presented in this chapter is from
2001 (Ezhilchelvan, Mostefaoui, and Raynal 2001), and is a generalization
of an older binary randomized consensus algorithm (Ben-Or 1983).

• Failure detector lower bounds for consensus were first given in 1996 (Chan-
dra, Hadzilacos, and Toueg 1996) and refined later (Delporte-Gallet, Fau-
connier, and Guerraoui 2002; Delporte-Gallet, Fauconnier, Guerraoui, Had-
zilacos, Kouznetsov, and Toueg 2004).

• Algorithms that implement consensus assuming asynchronous periods and
underlying malicious processes have also constituted an active area of re-
search (Yin, Martin, Venkataramani, Alvisi, and Dahlin 2003; Baldoni,
Hélary, Raynal, and Tangui 2003; Abraham, Chockler, Keidar, and Malkhi
2004; Avoine, Gärtner, Guerraoui, and Vukolic 2005; Doudou, Garbinato,
and Guerraoui 2005).

6. Consensus Variants

God does not often clap his hands. When he does, everybody should dance.
(African Proverb)

This chapter describes variants of the consensus abstraction which we stud-
ied in the previous chapter. These variants are motivated by applications of
consensus in areas like replication and distributed databases.

In the variants we consider here, just like in consensus, the processes
need to make consistent decisions, e.g., decide on common values. Unlike
in consensus, however, the decisions here cannot be any values proposed by
the processes. They, rather, need to obey specific coordination requirements
driven by the upper layer application.

The abstractions we will study here include total order broadcast, ter-
minating reliable broadcast, (non-blocking) atomic commitment, group mem-
bership, and view synchrony. We will focus here on fail-stop algorithms that
implement these abstractions. Excluding the total order abstraction (of which
we will discuss several variants in the exercise section), determining adequate
means to specify and implement these consensus variants for other models is
an open area of research.

6.1 Total Order Broadcast

6.1.1 Overview

Earlier in the book (Section 3.9), we discussed the causal order broadcast
abstraction and its implementation. Causal order broadcast enforces a global
ordering for all messages that causally depend on each other: such messages
need to be delivered in the same order and this order must respect causality.
Messages that are not causally related are said to be concurrent. Causal
order broadcast does not enforce any ordering among concurrent messages.

234 6. Consensus Variants

In particular, if a process p1 broadcasts a message m1 whereas a process p2

concurrently broadcasts a message m2, then the messages might be delivered
in different orders by the processes. For instance, p1 might deliver first m1

and then m2, whereas p2 might deliver first m2 and then m1.
A total order broadcast abstraction orders all messages, even those that

are not causally related. More precisely, total order broadcast is a reliable
broadcast communication abstraction which ensures that all processes deliver
messages in the same order. Whereas reliable broadcast ensures that processes
agree on the same set of messages they deliver, total order broadcast ensures
that they agree on the same sequence of messages, i.e., the set is now ordered.

The total order broadcast abstraction is sometimes also called atomic
broadcast because the message delivery occurs as if the broadcast were an
indivisible primitive (i.e., atomic): the message is delivered to all or to none of
the processes and, if the message is delivered, every other message is ordered
either before or after this message.

Total order broadcast is a very convenient abstraction to maintain the
consistency of replicas of a deterministic service whose behavior can be cap-
tured by a state machine. A state machine consists of state variables and
commands that update these variables and may produce some output. Com-
mands consist of deterministic programs, such that the outputs of the state
machine are solely determined by the initial state and the sequence of com-
mands previously executed. The service modeled by the state machine can
be made fault-tolerant by replicating it on different processes. Total order
broadcast ensures that all the replicas deliver concurrent commands from
different clients in the same order, and hence maintain the same state.

This approach can, for instance, be applied to implement highly available
shared objects of arbitrary types in a distributed system, i.e., beyond the
read-write (register) objects studied earlier in the book (Chapter 4). Each
process would host a replica of the object and invocations to the object
would be broadcast to all replicas using the total order broadcast primitive.
This will ensure that all replicas keep the same state and ensure that the
responses are consistent. In short, the use of total order broadcast ensures
that the object is highly available, yet it appears as if it were a single logical
entity accessed in a sequential and failure-free manner, i.e., it is atomic. We
will return to this topic in the exercise section.

6.1.2 Specifications

Many specifications of the total order broadcast abstraction can be consid-
ered. We focus here on two variants, which are both extensions of reliable
broadcast abstractions. The first is a regular variant that ensures total order-
ing only among the correct processes. The second is a uniform variant that
ensures total ordering with regard to all processes, including the faulty pro-
cesses as well. The first specification, depicted in Module 6.1, is captured by
property TO, together with properties RB1–RB4 (from Section 3.3), whereas

6.1 Total Order Broadcast 235

Module 6.1 Interface and properties of regular total order broadcast

Module:

Name: TotalOrder (to).

Events:

Request: 〈 toBroadcast | m 〉: Used to broadcast message m to Π .

Indication: 〈 toDeliver | src, m 〉: Used to deliver message m sent by
process src.

Properties:

TO: Total order: Let m1 and m2 be any two messages. Let pi and pj be
any two correct processes that deliver m1 and m2. If pi delivers m1 before
m2, then pj delivers m1 before m2.

RB1: Validity: If a correct process pi broadcasts a message m, then pi

eventually delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: If a message m is delivered by some process pj , then
m was previously broadcast by some process pi.

RB4: Agreement: If a message m is delivered by some correct process pi,
then m is eventually delivered by every correct process pj .

Module 6.2 Interface and properties of uniform total order broadcast

Module:

Name: UniformTotalOrder (uto).

Events:

〈 utoBroadcast | m 〉, 〈 utoDeliver | src, m 〉: with the same meaning and
interface of the total order broadcast interface.

Properties:

UTO: Uniform total order: Let m1 and m2 be any two messages. Let pi

and pj be any two processes that deliver m2. If pi delivers m1 before m2,
then pj delivers m1 before m2.

RB1–RB3: Same as in regular total order broadcast.

URB4: Uniform Agreement: If a message m is delivered by some process
pi (whether correct or faulty), then m is also eventually delivered by every
other correct process pj .

the second specification, depicted in Module 6.2, is captured by property
UTO, together with properties RB1–RB3 and URB4 (from Section 3.4).

Other combinations of TO or UTO with reliable and uniform reliable
broadcast properties lead to slightly different specifications. For conciseness,
we omit describing all the corresponding modules.

236 6. Consensus Variants

It is important to note that the total order property is orthogonal to the
causal order property discussed in Section 3.9. It is possible to have a total
order abstraction that does not respect causal order. On the other hand, and
as we pointed out, a causal order abstraction does not enforce total order:
the processes may deliver concurrent messages in different order to different
processes. Of course, it is also possible to build a total order abstraction on
top of a causal order primitive. We omit the interface of the resulting module
in this case.

6.1.3 Algorithm: Consensus-Based Total Order Broadcast

In the following, we give a total order broadcast algorithm, implementing the
interface of Module 6.1. The algorithm (Algorithm 6.1), called “Consensus-
Based Total Order”, ensures the properties of reliable broadcast plus the total
order (TO) property. It uses a reliable broadcast and a regular consensus
abstraction as underlying building blocks.

The intuitive idea underlying Algorithm 6.1 is the following. Messages are
first disseminated using a reliable (but possibly unordered) broadcast primi-
tive. Messages delivered this way are stored in a bag of unordered messages
at every process. The processes then use the consensus abstraction to order
the messages in this bag.

More precisely, the algorithm works in consecutive rounds. As long as new
messages are broadcast, the processes keep on moving sequentially from one
round to the other: 1, 2, . . . , k, k + 1, There is one consensus instance per
round. The consensus instance of a given round is used to have the processes
agree on a set of messages to assign to that round number. The messages are
then delivered in that round, according to some deterministic order, hence
ensuring total order. For instance, the first round decides which messages are
assigned sequence number 1, i.e., which messages are delivered in round 1.
The second round decides which messages are assigned sequence number 2,
and so on. All messages that are assigned round number k are delivered after
the messages assigned round number k−1. Messages with the same sequence
number are delivered according to some deterministic order agreed upon by
the processes in advance, e.g., based on message identifiers; that is, once the
processes have agreed on a set of messages for a given round, they simply
apply a deterministic function to sort the messages of the same set.

In each instance of consensus, every process proposes a (possibly differ-
ent) set of messages to be ordered. Each process simply proposes the set of
messages it has seen (i.e., it has rbDelivered) and not yet delivered according
to the total order semantics (i.e., it has not yet toDelivered). The properties
of consensus ensure that all processes decide the same set of messages for
that sequence number. In Algorithm 6.1, the wait flag is used to ensure that
a new round is not started before the previous round has terminated.

An execution of the algorithm is illustrated in Figure 6.1. The figure is
unfolded into two parallel flows: that of the reliable broadcasts, used to dis-

6.1 Total Order Broadcast 237

Algorithm 6.1 Consensus-Based Total Order Broadcast

Implements:
TotalOrder (to).

Uses:
ReliableBroadcast (rb);
Consensus (c).

upon event 〈 Init 〉 do
unordered := delivered := ∅;
sn := 1;
wait := false;

upon event 〈 toBroadcast | m 〉 do
trigger 〈 rbBroadcast | m 〉;

upon event 〈 rbDeliver | sm, m 〉 do
if m �∈ delivered then

unordered := unordered ∪ {(sm, m)};

upon (unordered �= ∅) ∧ (wait = false) do
wait := true;
trigger 〈 cPropose | sn, unordered 〉;

upon event 〈 cDecided | sn, decided 〉 do
delivered := delivered ∪ decided;
unordered := unordered \ decided;
decided := sort (decided); // some deterministic order;
forall (sm, m) ∈ decided do

trigger 〈 toDeliver | sm, m 〉; // following the deterministic order
sn := sn +1;
wait := false;

seminate the messages, and that of the consensus instances, used to order the
messages. Messages received from the reliable broadcast module are proposed
to the next instance of consensus. For instance, process p4 proposes message
m2 to the first instance of consensus. Since the first instance of consensus de-
cides message m1, process p4 resubmits m2 (along with m3 that was received
meanwhile) to the second instance of consensus.

Correctness. The no creation property follows from (1) the no creation prop-
erty of the reliable broadcast abstraction and (2) the validity property of
consensus. The no duplication property follows from (1) the no duplication
property of the reliable broadcast abstraction, and (2) the integrity property
of consensus and the use of the variable delivered.

Consider the agreement property. Assume that some correct process pi

toDelivers some message m. According to the algorithm, pi must have de-
cided a batch of messages with m inside that batch. Every correct process

238 6. Consensus Variants

p1

p2

p3

p4

p1

p2

p3

p4

Round 1 Round 2 Round 3

Consensus

Reliable Broadcast

toBroadcast (m1)

toDeliver (m1) toDeliver (m2) toDeliver (m3)
toDeliver (m4)

toBroadcast (m2)

toBroadcast (m3)

toBroadcast (m4)

m1

m2, m1

m1

m2 m2, m3

m2, m3

m2

m2 m3, m4

m3, m4

m3, m4

m3, m4

Fig. 6.1: Sample execution of the consensus-based total order broadcast al-
gorithm

eventually decides that batch because of the algorithm and the termination
property of consensus, and then toDelivers m.

Consider the validity property of total order broadcast, and let pi be some
correct process that toBroadcasts a message m. Assume by contradiction
that pi never toDelivers m. This means that m is never included in a batch
of messages that some correct process decides. Due the validity property of
reliable broadcast, every correct process eventually rbDelivers and proposes
m in a batch of messages to consensus. Due the validity property of consensus,
pi eventually decides a batch of messages including m and toDelivers m.

Consider now the total order property. Let pi and pj be any two correct
processes that toDeliver some message m2. Assume that pi toDelivers some
message m1 before m2. If pi toDelivers m1 and m2 in the same batch (i.e.,
the same round number), then due to the agreement property of consensus,
pj must have also decided the same batch. Thus, pj must toDeliver m1 before
m2 since we assume a deterministic function to order the messages for the
same batch before their toDelivery. Assume that m1 is from a previous batch
at pi. Due to the agreement property of consensus, pj must have decided
the batch of m1 as well. Given that processes proceed sequentially from one
round to the other, pj must have toDelivered m1 before m2.

Performance. To toDeliver a message when no failures occur, and by merging
fail-stop reliable broadcast and consensus algorithms presented in previous
chapters, three communication steps and 3N messages are required.

6.2 Terminating Reliable Broadcast 239

Variant. By replacing the regular consensus abstraction with a uniform one,
Algorithm 6.1 implements a uniform total order broadcast abstraction.

6.2 Terminating Reliable Broadcast

6.2.1 Overview

The goal of the reliable broadcast abstraction introduced earlier in the book
(Section 3.3) is to ensure that if a message is delivered to a process, then it
is delivered to all correct processes (uniform definition).

As its name indicates, terminating reliable broadcast is a form of reliable
broadcast with a specific termination property. To explain the underlying
intuition, consider the case where a given process pi is known to have the
obligation of broadcasting some message to all processes in the system. In
other words, pi is an expected source of information in the system and all
processes must perform some specific processing according to the message
m to be delivered from the source pi. All the remaining processes are thus
waiting for pi’s message. If pi uses a best-effort broadcast and does not crash,
then its message m will indeed be delivered by all correct processes.

Consider now the case where pi crashed and some process pj detects
that pi has crashed without having seen m. Does this mean that m was not
broadcast? Not really. It is possible that pi crashed while broadcasting m. In
fact, some processes might have delivered m whereas others might never do
so. This might be problematic for some applications. In our example, process
pj might need to know whether it should keep on waiting for m, or if it can
know at some point that m will never be delivered by any process.

At this point, one may think that the problem could have been avoided
if pi had used a uniform reliable broadcast primitive to broadcast m. Unfor-
tunately, this is not the case. Consider process pj in the example above. The
use of a uniform reliable broadcast primitive would ensure that, if some other
process pk delivered m, then pj would eventually also deliver m. However,
pj cannot decide if it should wait for m or not. Process pj has no means to
distinguish the case where some process has delivered m, and where pj can
indeed wait for m, from the case where no process will ever deliver m, in
which case pj should definitely not keep waiting for m.

The terminating reliable broadcast (TRB) abstraction ensures precisely
that every process pj either delivers the message m or some indication F
that m will never be delivered (by any process). This indication is given in
the form of a specific message to the processes: it is, however, assumed that
the indication is not like any other message, i.e., it does not belong to the
set of possible messages that processes broadcast. The TRB abstraction is
a variant of consensus because all processes deliver the same message, i.e.,
either message m or message F .

240 6. Consensus Variants

Module 6.3 Interface and properties of terminating reliable broadcast

Module:

Name: TerminatingReliableBroadcast (trb).

Events:

Request: 〈 trbBroadcast | src, m 〉: Used to initiate a terminating reliable
broadcast for process src. Note that if src �= self then m = ⊥.

Indication: 〈 trbDeliver | src, m 〉: Used to deliver message m broadcast
by process src (or F in the case src crashes).

Properties:

TRB1: Termination: Every correct process eventually delivers exactly one
message.

TRB2: Validity: If the sender src is correct and broadcasts a message m,
then src eventually delivers m.

TRB3: Integrity: If a correct process delivers a message m then either
m = F or m was previously broadcast by src.

TRB4: Uniform Agreement: If any process delivers a message m, then
every correct process eventually delivers m.

6.2.2 Specification

The properties of terminating reliable broadcast are depicted in Module 6.3.
It is important to note that the abstraction is defined for a specific origi-
nator process, denoted by src in Module 6.3, and known to all processes in
advance. A process declares itself as the originator by broadcasting a mes-
sage m and indicating itself as the source. For presentation uniformity, we
also assume that a process indicates that it participates in the terminating
reliable broadcast by broadcasting an empty message.

We consider here the uniform variant of the problem where agreement is
uniformly required among any pair of processes, be they correct or faulty.

6.2.3 Algorithm: Consensus-Based TRB

Algorithm 6.2, called “Consensus-Based TRB”, implements TRB using three
underlying abstractions: a perfect failure detector, a uniform consensus, and
a best-effort broadcast abstraction.

Algorithm 6.2 works by having the source of the message m disseminate
m to all processes using a best-effort broadcast. Every process waits until it
either gets the message broadcast by the sender process or detects the crash
of the originator process. The assumption of a perfect failure detector and
the validity property of the broadcast ensure that the process does not wait
forever.

Then all processes run a consensus instance to agree on whether to deliver
m or to deliver the failure notification F . The value that is proposed to the

6.2 Terminating Reliable Broadcast 241

Algorithm 6.2 Consensus-Based TRB

Implements:
TerminatingReliableBroadcast (trb).

Uses:
BestEffortBroadcast (beb);
UniformConsensus (uc);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
src := ⊥;
proposal := ⊥;
correct := Π ;

upon event 〈 crash | pi 〉 do
correct := correct \ {pi};

upon event 〈 trbBroadcast | pi, m 〉 do
src := pi;
if (src = self) then

trigger 〈 bebBroadcast | m 〉;

upon event 〈 bebDeliver | src, m 〉 ∧ (proposal = ⊥) do
proposal := m;
trigger 〈 ucPropose | proposal 〉;

upon (src �∈ correct) ∧ (src �= ⊥) ∧ (proposal = ⊥) do
proposal := Fsrc;
trigger 〈 ucPropose | proposal 〉;

upon event 〈 ucDecide | decided 〉 do
trigger 〈 trbDeliver | src, decided 〉

consensus instance depends on whether the process delivered m or detected
the crash of the sender. The result of the consensus is then delivered by the
TRB algorithm.

An execution of the algorithm is illustrated in Figure 6.2. Process p1

crashes while broadcasting m. Therefore p2 and p3 get m but p4 does not.
The remaining processes use the consensus module to decide which value must
be delivered. In the example of the figure, the processes decide to deliver m,
but F could be also a possible outcome (since p1 has crashed).

Correctness. The integrity property of best-effort broadcast, together with
the validity property of consensus, ensure that if a process trbDelivers a
message m, then either m is F or m was trbBroadcast by src.

The no duplication property of best-effort broadcast and the integrity
property of consensus ensure that no process trbDelivers more than one mes-
sage. The completeness property of the failure detector, the validity property

242 6. Consensus Variants

p1

p2

p3

p4

trbBroadcast (p1, m)

ucPropose (m)

ucPropose (m)

ucPropose (F)

crash (p1)

ucDecide (m) trbDeliver (m)

trbDeliver (m)

trbDeliver (m)

uniform consensus

Fig. 6.2: Sample execution of consensus-based terminating reliable broadcast

of best-effort broadcast, and the termination property of consensus, ensure
that every correct process eventually trbDelivers a message.

The (uniform) agreement property of (uniform) consensus ensures unifor-
mity of terminating reliable broadcast.

Consider now the validity property of terminating reliable broadcast. As-
sume that src does not crash and trbBroadcasts a message m �= F . Due the
accuracy property of the failure detector, no process detects the crash of src.
Due to the validity property of best-effort broadcast, every correct process
bebDelivers m and proposes m to consensus. By the termination property of
consensus, all correct processes, including src, eventually decide and trbDe-
liver a message m.

Performance. The algorithm requires the execution of the uniform consen-
sus abstraction. In addition to the cost of uniform consensus, the algorithm
exchanges N messages and requires one additional communication step (for
the initial best-effort broadcast).

Variant. Our TRB specification has a uniform agreement property. As for
reliable broadcast, we could specify a regular variant of TRB with a regular
agreement property. In that case, the underlying uniform consensus abstrac-
tion could be replaced by a regular one.

6.3 Non-blocking Atomic Commit

6.3.1 Overview

The unit of data processing in a distributed information system is the trans-
action. This can be viewed as a portion of a program delimited by two prim-
itives: begin and end. The transaction is typically expected to be atomic in
two senses, namely,

Concurrency atomicity: transactions appear to execute one after the other
and this serializability is usually guaranteed using some form of dis-
tributed locking or some form of optimistic concurrency control.

6.3 Non-blocking Atomic Commit 243

Failure atomicity: every transaction appears to execute either completely (it
is said to commit) or not at all (it is said to abort).

Ensuring these two forms of atomicity in a distributed environment is not
trivial because the transaction might be accessing information on different
processes (i.e., different data managers), which might have different opinions
on whether the transaction should commit or not. For instance, some data
managers might detect concurrency control conflicts whereas others might
not. Similarly, some data managers might detect problems that prevent a
transaction from committing, either logical or physical ones, as we discuss
below. Despite differences in opinions, all data managers need to make sure
that they discard the new updates in case the transaction aborts, or make
them visible in case the transaction commits. In other words, all data man-
agers need to agree on the same outcome for the transaction.

The non-blocking atomic commit (NBAC) abstraction is used precisely
to solve this problem in a reliable way. The processes, each representing a
data manager, agree on the outcome of a transaction. The outcome is either
to commit the transaction, say, to decide 1, or to abort the transaction, say
to decide 0. The outcome depends of the initial proposals of the processes.
Every process proposes an initial vote for the transaction: 0 or 1. Voting
1 for a process means that the process is willing and able to commit the
transaction.

• Typically, by voting 1, a process witnesses the absence of any problem dur-
ing the execution of the transaction. Furthermore, the process promises to
make the update of the transaction permanent. This, in particular, means
that the process has stored the temporary update of the transaction in
stable storage: should it crash and recover, it can install a consistent state
including all updates of the committed transaction.

• By voting 0, a data manager process vetos the commitment of the transac-
tion. As we pointed out above, this can occur if the process cannot commit
the transaction for an application-related reason, e.g., not enough money
for a bank transfer in a specific node, for a concurrency control reason,
e.g., there is a risk of violating serializability in a database system, or a
storage reason, e.g., the disk is full and there is no way to guarantee the
durability of the transaction’s updates.

6.3.2 Specification

NBAC is characterized by the properties listed in Module 6.4. At first glance,
the problem looks like uniform consensus: the processes propose 0 or 1 and
need to decide on a common final value of 0 or 1. There is, however, a fun-
damental difference: in consensus, any proposed value can be decided. In the
atomic commit problem, the decision 1 cannot be taken if any of the pro-
cesses has proposed 0 (this would mean that some data managers can indeed

244 6. Consensus Variants

Module 6.4 Interfaces and properties of NBAC

Module:

Name: Non-BlockingAtomicCommit (nbac).

Events:

Request: 〈 nbacPropose | v 〉: Used to propose a value for the commit (0
or 1).

Indication: 〈 nbacDecide | v 〉: Used to indicate the decided value for
nbac.

Properties:

NBAC1: Uniform Agreement: No two processes decide different values.

NBAC2: Integrity: No process decides two values.

NBAC3: Abort-Validity: 0 can only be decided if some process proposes
0 or crashes.

NBAC4: Commit-Validity: 1 can only be decided if no process proposes
0.

NBAC5: Termination: Every correct process eventually decides.

commit the transaction and ensure its durability whereas others cannot). It
is indeed a veto right that is expressed with a 0 vote.

6.3.3 Algorithm: Consensus-Based NBAC

Algorithm 6.3 implements NBAC using three underlying abstractions: a per-
fect failure detector, a uniform consensus, and a best-effort broadcast. To
distinguish the value proposed to the NBAC abstraction (to be implemented)
and the one proposed to the underlying consensus abstraction, we call the
first a vote and the second a proposal.

The algorithm works as follows. Every process pi broadcasts its initial
vote (0 or 1) to all other processes, and waits, for every process pj, either to
get the vote of pj or to detect the crash of pj. If pi detects the crash of any
process or gets a vote 0 from any process, then pi directly (without waiting
for more messages) invokes consensus with 0 as its proposal. If pi gets the
vote 1 from all processes, then pi invokes consensus with 1 as its proposal.
Then the processes decide for NBAC according to the outcome of consensus.

Correctness. The agreement property of NBAC directly follows from that
of consensus. The no duplication property of best-effort broadcast and the
integrity property of consensus ensure that no process nbacDecides two dif-
ferent values. The termination property of NBAC follows from the validity
property of best-effort broadcast, the termination property of consensus, and
the completeness property of the failure detector.

6.3 Non-blocking Atomic Commit 245

Algorithm 6.3 Consensus-Based NBAC

Implements:
NonBlockingAtomicCommit (nbac).

Uses:
BestEffortBroadcast (beb);
UniformConsensus (uc);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
voted := ∅;
correct := Π ;
proposed := false;

upon event 〈 crash | pi 〉 do
correct := correct \{pi};

upon event 〈 nbacPropose | v 〉 do
trigger 〈 bebBroadcast | v 〉;

upon event 〈 bebDeliver | pi, v 〉 do
if (v = 0) ∧ (proposed = false) then

trigger 〈 ucPropose | 0 〉;
proposed := true;

else
voted := voted ∪ {pi};

upon (correct \ voted = ∅) ∧ (proposed = false) do
if correct �= Π then

trigger 〈 ucPropose | 0 〉;
else

trigger 〈 ucPropose | 1 〉;
proposed := true;

upon event 〈 ucDecide | decided 〉 do
trigger 〈 nbacDecide | decided 〉

Consider now the validity properties of NBAC. The commit-validity prop-
erty requires that 1 is decided only if all processes propose 1. Assume by
contradiction that some process pi nbacProposes 0 whereas some process pj

nbacDecides 1. According to the algorithm, for pj to nbacDecide 1, it must
have decided 1, i.e., through the consensus abstraction. Due to the validity
property of consensus, some process pk must have proposed 1 to the consen-
sus abstraction. Due to the validity property of best-effort broadcast, there
are two cases to consider: either (1) pi crashes before pk bebDelivers pi’s
proposal or (2) pk bebDelivers pi’s proposal. In both cases, according to the
algorithm, pk proposes 0 to consensus: a contradiction. Consider now the
abort-validity property of NBAC. This property requires that 0 is decided
only if some process nbacProposes 0 or crashes. Assume by contradiction

246 6. Consensus Variants

that all processes nbacPropose 1 and no process crashes, whereas some pro-
cess pi nbacDecides 0. For pi to nbacDecide 0, due the validity property of
consensus, some process pk must propose 0. According to the algorithm and
the accuracy property of the failure detector, pk would only propose 0 if some
process nbacProposes 0 or crashes: a contradiction.

Performance. The algorithm requires the execution of the consensus abstrac-
tion. In addition to the cost of consensus, the algorithm exchanges N 2 mes-
sages and requires one additional communication step for the initial best-
effort broadcast.

Variant. One could define a nonuniform variant of NBAC, i.e., by requiring
only agreement and not uniform agreement. However, this abstraction would
not be useful in a practical setting to coordinate the termination of a transac-
tion in a distributed database system. Indeed, the very fact that some process
has decided to commit a transaction might trigger an external action: say,
the process has delivered some cash through an ATM. Even if that process
has crashed, its decision is important and other processes should reach the
same outcome.

6.4 Group Membership

6.4.1 Overview

In the previous sections, our algorithms were required to make decisions based
on the information about which processes were operational or crashed. At any
point in the computation, every process has a view of what processes in the
system are up and running. In the algorithms we considered, this information
is provided by the failure detector module available at each process. Accord-
ing to the underlying failure detector, the view might or not accurately reflect
the actual status of the crashes in the system. In any case, the outputs of
failure detector modules at different processes are not coordinated. In partic-
ular, different processes may get notifications of failures of other processes in
different orders and, in this way, obtain a different perspective of the system’s
evolution.

• One of the roles of a group membership (GM) abstraction is to provide
consistent information about which processes have crashed and which pro-
cesses have not.

• Another role of a membership abstraction is to coordinate the joining of
new processes, i.e., those that wish to be included in the system and par-
ticipate in the computation, or the exclusion of old processes that would
voluntarily want to leave this set. As with failure information, it might be
desirable that the result of leave and join operations are provided to the
processes in a consistent way.

6.4 Group Membership 247

Module 6.5 Interface and properties of group membership

Module:

Name: GroupMembership (gm).

Events:

Indication: 〈 gmView | V 〉: Used to deliver update membership infor-
mation in the form of a view. A view V is a tuple (i, M), where i = V.id
is a unique view identifier and M = V.memb is the set of processes that
belong to the view.

Properties:

Memb1: Monotonicity: If a process p installs view V j = (j, Mj) after
installing V i = (i, Mi), then j > i and Mj ⊂ Mi.

Memb2: Uniform Agreement: If two processes install views V i = (i, Mi)
and V ′i = (i, M ′

i), then Mi = M ′

i .

Memb3: Completeness: If a process p crashes, then eventually every cor-
rect process installs V i = (i, Mi) with p �∈ Mi.

Memb4: Accuracy: If some process installs a view V i = (i, Mi) and q �∈
Mi, then q has crashed.

To simplify the presentation of the group membership concept, we will focus
here on the case of process crashes, i.e., the first role above. That is, the ini-
tial membership of the group is the complete set of processes, and subsequent
membership changes are solely caused by crashes. We do not consider explicit
join and leave operations. These can be built as extensions of our basic ab-
straction. Reference pointers to these operations are given in the historical
notes of this chapter.

6.4.2 Specification

The set of processes that participate in the computation is sometimes called
a group. At any point in time, the current membership of a group is called
the group view , or simply the view. Each view V i = (i, Mi) is a tuple that
contains a unique view identifier i and a set of member processes M . For
presentation simplicity, we consider here that the group is initially the entire
system. That is, initially, every process installs view V 0 = (0, Π), i.e., the
initial view of all processes V 0 includes the complete set of processes Π
in the system. We consider a linear group membership abstraction, where
all correct processes are supposed to deliver the same sequence of views:
V 0 = (0, M0), V

1 = (1, M1), A process that delivers a view V i is said to
install view V i.

The group membership abstraction is characterized by the properties
listed in Module 6.5. The uniform agreement and local monotonicity cap-
ture the fact that the processes install the same sequence of shrinking views,

248 6. Consensus Variants

i.e., the linearity flavor mentioned above. The completeness and accuracy
properties are similar to those of the perfect failure detector abstraction and
dictate the conditions under which a process can be excluded from a group.

6.4.3 Algorithm: Consensus-Based Group Membership

Algorithm 6.4 implements the group membership abstraction assuming a
uniform consensus and a perfect failure detector abstraction. At initialization,
each process installs a view including all the processes in the system. From
that point on, the algorithm remains idle until a process is detected to have
crashed. Since different processes may detect crashes in different orders, a new
view is not generated immediately, i.e., a process does not install a new view
in a unilateral way as soon as it detects a failure. Instead, a consensus instance
is executed to decide which processes are to be included in the next view.
The wait flag is used to prevent a process from triggering a new consensus
instance before the previous consensus instance has terminated. When the
consensus decides, a new view is delivered. Note that, to preserve agreement,
a process pi may install a view containing a process that pi already knows
to has crashed, i.e., the perfect failure detector module at pi have already
output that process. In this case, after installing that view, pi will initiate a
new consensus instance to trigger the installation of another view that would
exclude the crashed process.

An execution of the membership algorithm is illustrated in Figure 6.3. In
the execution, both p1 and p2 crash. Process p3 detects the crash of p2 and
initiates a consensus instance to define a new view. Process p4 detects the
crash of p1 and proposes a different view to that consensus instance. As a
result of the first consensus instance, p1 is excluded from the view. Since p3

has already detected the crash of p2, p3 triggers a new consensus instance to
exclude p2. Eventually, p4 also detects the crash of p2 and also participates
in the second consensus instance to install the third view. This view includes
only the correct processes.

Correctness. The Monotonicity property follows directly from the algorithm.
The agreement property follows from consensus. The completeness and accu-
racy properties follow from those of the perfect failure detector abstraction.

Performance. The algorithm requires at most one consensus execution for
each process that crashes.

Variant. We focus here only on the uniform variant of the group member-
ship abstraction: a regular group membership abstraction is specified by re-
placing the uniform agreement property with a regular agreement one and
a corresponding algorithm might use regular consensus instead of uniform
consensus.

6.5 View Synchronous Communication 249

Algorithm 6.4 Consensus-Based Group Membership

Implements:
GroupMembership (gm).

Uses:
UniformConsensus (uc);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
view := (0, Π);
correct := Π ;
wait := false;
trigger 〈 gmView | view 〉;

upon event 〈 crash | pi 〉 do
correct := correct \{pi};

upon (correct ⊂ view.memb) ∧ (wait = false) do
wait := true;
trigger 〈 ucPropose | view.id+1, correct 〉;

upon event 〈 ucDecided | id, memb 〉 do
view := (id, memb);
wait := false;
trigger 〈 gmView | view 〉;

p1

p2

p3

p4

crash (p2)

crash (p1)

membView (p2, p3, p4)membView (p1, p2, p3, p4)

ucPropose (p3, p4)

uniform consensus

ucPropose (p2, p3, p4)

ucPropose (p1, p3, p4)

membView (p3, p4)

crash (p1)
ucPropose (p3, p4)

crash (p2)

Fig. 6.3: Sample execution of the membership algorithm

6.5 View Synchronous Communication

6.5.1 Overview

The view synchronous communication abstraction (we also say view syn-
chrony) is motivated by the combination of two abstractions: reliable broad-
cast and membership. In the following, we discuss the subtle issue that arises
in this combination and motivates the introduction of a first class abstraction.

250 6. Consensus Variants

Consider the following scenario of a group of processes exchanging mes-
sages where one of these processes, say, q, crashes. Assume that this failure
is detected and that the membership abstraction is used by the processes to
install a new view V = (i, Mi) such that q �∈ Mi. Further assume that, after
V has been installed, some process pi delivers a message m originally broad-
cast by q. Note that such a scenario is possible, as nothing prevents, in the
specification of a reliable broadcast, a message broadcast by a process that
has failed from being later delivered. In fact, in order to ensure the agree-
ment of the delivery, messages originally broadcast by q are typically relayed
by other processes, especially for the case where q has failed. Clearly, it is
counterintuitive for the application programmer to handle a message from a
process q after q have been declared to be failed and been expelled from the
group view. It would thus be desirable for pi to simply discard m. Unfortu-
nately, it may also happen that some other process pj has already delivered
m before delivering view V . So, in this scenario, one may be faced with two
conflicting goals: ensuring the reliability of the broadcast, which means that
m has indeed to be delivered by pi, but, at the same time, ensuring the con-
sistency of the view information, which means that m has to be discarded at
pi.

In fact, what is needed is to ensure that the installation of views is ordered
with respect to the message flow. If a message m is delivered by a (correct)
process before the installation of V , then m should, before the view change,
be delivered to all processes that install V . The abstraction that preserves
this ordering constraint is called view synchronous broadcast, as it gives the
illusion that failures are synchronous (or atomic), i.e., that they occur at the
same point in time with regard to the message flow.

6.5.2 Specification

View synchronous broadcast is an extension of both reliable broadcast and
group membership: as a consequence, the properties we give in Module 6.6
encompass those of reliable broadcast and group membership. Given that we
could consider here the properties of regular or uniform reliable broadcast
and, optionally, the properties of causal order, we could end up with different
possible flavors of view synchronous communication.

In Module 6.6, we illustrate the view synchrony concept by focusing on
the combination of group membership (which we have already considered in
its uniform form) with regular reliable broadcast. Other combinations are
possible. We will come back to the view synchronous broadcast variant ob-
tained by combining the group membership properties with those of uniform
reliable broadcast, which will be called uniform view synchronous broadcast.

In addition to the properties of reliable broadcast and group membership,
the view inclusion property of Module 6.6 orchestrates the way messages
should be delivered with respect to view changes, i.e., new view installations.
In that property, we state that a process delivers (or broadcasts) a message

6.5 View Synchronous Communication 251

m in view V i if the process delivers (or broadcasts) the message m after
installing view V i and before installing view V i+1. This property addresses
the issue of messages coming from processes already declared to have crashed.
Messages are delivered in the same view by different processes, and this view
is the view where the messages were broadcast.

Since messages have to be delivered in the view in which they are broad-
cast, if new messages are continuously broadcast, then the installation of
a new view may be indefinitely postponed. In other words, the view syn-
chronous abstraction would be impossible to implement without any control
on the broadcast pattern. Therefore, the interface of this abstraction includes
two specific events that handle the interaction between the view synchronous
abstraction and the application layer (i.e., the upper layer): block and block-
ok. The block event is used by the view synchronous abstraction to request
the application layer to stop broadcasting messages in the current view. The
block-ok event is used by that application layer to acknowledge the block
request.

We assume that the application layer is well behaved in that it indeed
stops broadcasting messages (after triggering the block-ok event) when it is
asked to do so (through the block event): new messages can be broadcast
after the view is installed. On the other hand, we require from the view
synchronous broadcast abstraction that it require the stopping of messages
from the application layer only if a new view needs to be installed, i.e., only if
a process that is member of the current view has failed. (We do not explicitly
state these properties in Module 6.6 as we consider them to be of a different
nature than the view inclusion property.)

6.5.3 Algorithm: TRB-Based View Synchronous Broadcast

We give a TRB-based algorithm (Algorithm 6.5–6.6) that implements the
view synchronous communication abstraction as defined by the properties
of Module 6.6. For simplicity, we give the algorithm for a single group, and
omit the group identifier from the service interface. The key element of the
algorithm is a collective flush procedure executed by the processes before in-
stalling each new view. This is performed by having the processes trbBroad-
cast (according to the terminating reliable broadcast semantics) all messages
they have been vsDelivered during the current view.

New views (gmViews), that are installed by the underlying group mem-
bership abstraction before the flush is complete, are kept in a list of pending-
views before being actually installed by the view synchronous communication
abstraction (vsView). The collective flush is first initiated at each process
by requesting the application to stop vsBroadcasting messages in the cur-
rent view, i.e., before the new view is installed. When this authorization is
granted at a given process, the process also stops vsDelivering new messages
from the underlying reliable broadcast module. If vsDelivered by any process

252 6. Consensus Variants

Module 6.6 Interface and properties of view synchronous communication

Module:

Name: ViewSynchrony (vs).

Events:

Request: 〈 vsBroadcast | g,m 〉: Used to broadcast message m to a group
of processes g.

Indication: 〈 vsDeliver | g, src, m 〉: Used to deliver message m broadcast
by process src in group g.

Indication: 〈 vsView | g, V i 〉: Used to deliver update membership infor-
mation in the form of a view. A view V is a tuple (i, M), where i = V.id
is a unique view identifier and M = V.memb is the set of processes that
belong to the view.

Indication: 〈 vsBlock | g 〉: Used to inform the application that a new
view needs to be installed and the broadcasting of new messages need to
be blocked until that installation.

Request: 〈 vsBlockOk | g 〉: Used by the application to confirm that the
broadcasting of new messages will be temporarily blocked.

Properties:

VS: View Inclusion: If a process p delivers a message m from process q in
view V , then m was broadcast by q in view V .

RB1–RB4: from reliable broadcast.

Memb1–Memb4: from group membership.

in the current view, these messages will be vsDelivered through the TRB ab-
straction. Using this abstraction, every process, before installing a new view,
transmits to all processes the set of messages that it has vsDelivered up to
that point. Eventually, when all TRBs are terminated, each process has the
set of messages vsDelivered by every other process (that did not fail). A union
of all these sets is taken as the set of messages to be vsDelivered before a
new view is installed.

An example of the execution of the algorithm is presented in Figure 6.4.
Process p1 vsBroadcasts messages m1 and m2 before crashing. Message m1 is
vsDelivered by p3 and p4 but not by p2. On the other hand, m2 is vsDelivered
by p2 but not by p3 and p4. There is also a third message that is vsDelivered
by all correct processes before the flush procedure is initiated. When the
underlying membership module installs a new view, excluding p1 from the
group, a TRB is initiated for each process in the previous view. Each TRB
includes the set of messages that have been vsDelivered. For instance, the
TRB from p2 includes m1 and m3 since m2 has not yet been vsDelivered.
The union of these sets, {m1, m2, m3}, is the set of messages that have to
be vsDelivered before installing the new view. Note that m1 is eventually

6.5 View Synchronous Communication 253

Algorithm 6.5 TRB-Based View Synchronous Broadcast (data transmission)

Implements:
ViewSynchrony (vs).

Uses:
TerminatingReliableBroadcast (trb);
GroupMembership (gm);
BestEffortBroadcast (beb).

upon event 〈 Init 〉 do
pending-views := delivered := trb-done := ∅;
next-view := curr-view := ⊥;
flushing := false;
blocked := true;

upon event 〈 vsBroadcast | m 〉 ∧ (blocked = false) do
delivered := delivered ∪ {(self, m)};
trigger 〈 vsDeliver | self, m 〉;
trigger 〈 bebBroadcast | [Data, curr-view.id, m] 〉;

upon event 〈 bebDeliver | srcm,[Data, vid, m] 〉 do
if (curr-view.id = vid) ∧ ((srcm, m) �∈ delivered) ∧ (blocked = false) then

delivered := delivered ∪ {(srcm, m)};
trigger 〈 vsDeliver | srcm, m 〉;

upon event 〈 gmView | V = (i, M) 〉 ∧ (i = 0) do // initial-view
curr-view := (0, M)
blocked := false;

upon event 〈 gmView | V = (i, M) 〉 ∧ (i > 0) do
addToTail (pending-views, V);

vsDelivered to p2 by the underlying reliable broadcast module, but will be
discarded; the same will happen to m2 with regard to p3 and p4.

Correctness. Consider first the view inclusion property. Let m be any message
vsDelivered by some process p in a given view V . If p is the sender of the
message, then p directly vsDelivers the message upon vsBroadcasting it, in
the same view, V . Consider now the case where the sender q is a different
process. There are two possibilities. Either p vsDelivers m after bebDelivering
it, or after trbDelivering it. In the first case, the algorithm checks if the view
within which the message was vsBroadcast is the current one: if not, the
message is discarded. In the second case, the messages proposed to consensus
are those vsBroadcast in the current view.

The no creation broadcast property directly follows from the properties of
the underlying broadcast abstractions. The no duplication broadcast property
follows from the use of the variable delivered and the check that only messages
vsBroadcast in a view are vsDelivered in that view. Consider the agreement

254 6. Consensus Variants

Algorithm 6.6 TRB-Based View Synchronous Broadcast (view change)

upon (pending-views �= ∅) ∧ (flushing = false) do
next-view := removeFromHead (pending-views);
flushing := true;
trigger 〈 vsBlock 〉;

upon event 〈 vsBlockOk 〉 do
blocked := true;
for j = 1 to N do

if j = self then
trigger 〈 trbBroadcast | pj , [curr-view.id, delivered] 〉;

else
trigger 〈 trbBroadcast | pj , ⊥ 〉;

upon event 〈 trbDeliver | pi, m=[vid, del] 〉 ∧ (m=Fpi
∨ vid=curr-view.id) do

trb-done := trb-done ∪ {pi};
if m �= Fpi

then
forall (srcm, m) ∈ del: (srcm, m) �∈ delivered do

delivered := delivered ∪ { (srcm, m) };
trigger 〈 vsDeliver | srcm, m 〉;

upon (trb-done = curr-view.memb) ∧ (blocked) do
curr-view := next-view;
flushing := blocked := false;
delivered := ∅;
trb-done := ∅;
trigger 〈 vsView | curr-view 〉;

broadcast property. Assume that some correct process pi vsDelivers some
message m. Every correct process vsDelivers m after bebDelivering it, or
upon trbDelivering it if a new view needs to be installed (at least p will
trbBroadcast a batch containning that message m).

Consider the validity property of the broadcast, and let p be some cor-
rect process that vsBroadcasts a message m. Process p directly vsDelivers
m and, due to the agreement property above, every correct process vsDeliv-
ers m. The monotonicity, group agreement and accuracy properties directly
follow from those of the underlying group membership abstraction. The com-
pleteness property follows from that of the underlying group membership
abstraction, the termination property of terminating reliable broadcast, and
the assumption that the application is well behaved (i.e. it stops vsBroad-
casting messages when it is asked to do so).

Performance. During periods where the view does not need to change, the
cost of vsDelivering a message is the same as the cost of bebDelivering it.
For a view change, however, the algorithm requires the execution of a group
membership instance, plus the (parallel) execution of one TRB for each pro-
cess in the current view, in order to install the new view. Considering the
consensus-based algorithms used to implement those abstractions (TRB and

6.5 View Synchronous Communication 255

p1

p2

p3

p4

vsView (p1, p2, p3, p4)

m1 discarded

vsView (p2, p3, p4)

m1

m2m1

m3

membView (p2, p3, p4)

m2

m2

TRB (p4)
TRB (p3)

TRB (p2)
TRB (p1)

(m1, m2, m3)

F (m2, m3)

(m1, m3)
(m1, m3)

Fig. 6.4: Sample execution of the TRB-based view synchronous algorithm

GM), installing a new view requires one consensus instance for the underlying
view membership installation and a parallel execution of several underlying
consensus instances, one for each TRB and thus for each process in the view.
Through an exercise, we discuss how to optimize Algorithm 6.5–6.6 by run-
ning a single instance of consensus to agree both on the new view and on the
set of messages to be vsDelivered before the new view is installed.

6.5.4 Algorithm: Consensus-Based Uniform View Synchronous
Broadcast

The view-synchronous broadcast algorithm we have just presented (Algo-
rithm 6.5–6.6) is uniform in the sense that no two processes (be they correct
or not) install different views. The algorithm is not uniform in the message
delivery sense. That is, a process might vsDeliver a message and crash, while
no other process vsDelivers that message.

We give here an algorithm (Algorithm 6.7–6.8) that ensures uniformity
in both senses: (1) in the sense of group membership and (2) in the sense of
view installation. In other words, Algorithm 6.7–6.8 implements a uniform
view synchronous broadcast abstraction. To understand this algorithm, it is
first important to observe that Algorithm 6.5–6.6 cannot be directly trans-
formed to ensure the uniformity of message delivery simply by replacing the
underlying best-effort broadcast abstraction with a uniform reliable broad-
cast one. The following scenario illustrates that. Consider a process pi that
vsBroadcasts a message m, urbBroadcasts m, and then vsDelivers m after
urbDelivering it. The only guarantee here is that all correct processes will

256 6. Consensus Variants

Algorithm 6.7 Consensus-Based Uniform View Synchrony (data transmission)

Implements:
UniformViewSynchrony (uvs).

Uses:
UniformConsensus (uc);
BestEffortBroadcast (beb);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
current-view := (0, Π); correct := Π ;
flushing := blocked := := wait false;
delivered := received := ∅;
forall m do ackm := ∅;
forall i do dset[i] := ∅;

upon event 〈 uvsBroadcast | m 〉 ∧ (blocked = false) do
received := received ∪ {(self, m)};
trigger 〈 bebBroadcast | [Data, current-view.id, m] 〉;

upon event 〈 bebDeliver | pi,[Data, vid, m] 〉 ∧
(current-view.id = vid) ∧ (blocked = false) do

ackm := ackm ∪ {pi}
if (m �∈ received) then

received := received ∪ {(pi, m)};
trigger 〈 bebBroadcast | [Data, current-view.id, m] 〉;

upon exists (src, m) ∈ received such that
(current-view.memb ⊆ ackm) ∧ (m �∈ delivered) do

delivered := delivered ∪ {(src, m)};
trigger 〈 uvsDeliver | src, m 〉;

eventually urbDeliver m; they might do so, however, after a new view has
been installed, which means that m would not be vsDelivered.

The algorithm (Algorithm 6.7–6.8) uses a best-effort broadcast, a consen-
sus, and a perfect failure detector abstraction. It works as follows. When a
process vsBroadcasts a message m, it simply bebBroadcasts m and adds m
to the set of messages it has bebBroadcast. When a process p bebDelivers
a message m, and m was bebBroadcast by a process q in the same view,
p adds m to the set “received” (if it was not there before), and adds q to
the set of processes that have acknowledged m, denoted by ackm. Then p
bebBroadcasts m (i.e., acknowledges m) if it did not do so already. When all
processes in the current view are in ackm at a given process q, the message
m is vsDelivered by q.

If any process detects the crash of at least one member of the current
view, the process initiates a collective flush procedure as in the view syn-
chrony algorithms given in the chapter. The process broadcasts here the set
of received messages. It is important to note here that some of these message

6.5 View Synchronous Communication 257

Algorithm 6.8 Consensus-Based Uniform View Synchrony (view change)

upon event 〈 crash | pi 〉 do
correct := correct \{pi};

upon (correct ⊂ current-view.memb) ∧ (flushing = false) do
flushing := true;
trigger 〈 uvsBlock 〉;

upon event 〈 uvsBlockOk 〉 do
blocked := true;
trigger 〈 bebBroadcast | [Dset, current-view.id, received] 〉;

upon event 〈 bebDeliver | src,[Dset, vid, mset] 〉 do
dset[vid] := dset[vid] ∪ {(src, mset)};

upon ∀p ∈ correct ∃{(p, mset)} ∈ dset[current-view.id] ∧ (wait = false) do
trigger 〈 ucPropose | current-view.id+1, [correct, dset[current-view.id]] 〉;
wait := true;

upon event 〈 ucDecided | id, [memb, vs-dset] 〉 do
forall (p, mset) ∈ vs-dset: p ∈ memb do

forall (srcm, m) ∈ mset: (srcm, m) �∈ delivered do
delivered := delivered ∪ { (srcm, m) };
trigger 〈 uvsDeliver | srcm, m 〉;

flushing := blocked := wait := false;
received := delivered := ∅;
current-view := (id, memb);
trigger 〈 uvsView | current-view 〉;

might not have been vsDelivered. As soon as a process p has collected the
received set from every other process that p did not detect to have crashed, p
proposes a new view through a consensus instance. Besides that view, process
p also proposes to consensus the received sets of all processes in the proposed
views. Before installing the new view, each process parses all received sets in
the consensus decision and vsDelivers those messages it has not vsDelivered
yet. Finally the new view is installed and normal operation resumed.

Correctness. The correctness arguments are similar to those of Algorithm 6.5–
6.6. The group membership properties follow from the properties of consensus
and the perfect failure detector properties. It is also easy to see that no mes-
sage is vsDelivered twice and it can only be vsDelivered if it was indeed
vsBroadcast. Hence the no creation and no duplication properties. Consider
a process that vsDelivers a message. If it does so through consensus before a
view change, then all correct processes install that new view and vsDeliver
the message. Otherwise, all correct processes must have stored the message
in the variable received. Hence, every correct process eventually vsDelivers
that message. Hence the agreement property. A similar argument applies to

258 6. Consensus Variants

the validity property. The view inclusion property directly follows from the
algorithm.

Performance. During periods where the view does not need to change, the
cost of vsDelivering a message is the same as the cost of a best-effort broad-
cast primitive by the sender. To install a new view, the algorithm requires
the parallel execution of best-effort broadcasts for all processes in the view,
followed by a consensus execution to agree on the next view.

6.6 Hands-On

6.6.1 Uniform Total Order Broadcast

The communication stack used to implement the protocol is the following:

Application
Uniform Total Order

(implemented by Consensus-Based UTO)
Delay

Uniform Consensus
(implemented by Flooding UC)

Uniform Reliable Broadcast
(implemented by All-Ack URB)

Perfect Failure Detector
(implemented by TcpBasedPFD)

Best-Effort Broadcast
(implemented by Basic Broadcast)

Perfect Point-to-Point Links
(implemented by TcpBasedPerfectP2P)

The protocol implementation is depicted in Listing 6.1.

Listing 6.1. Uniform Total Order Broadcast implementation

package appia.protocols.tutorialDA.consensusTO;

public class ConsensusTOSession extends Session{

InetWithPort iwp;
Channel channel;
/∗global sequence number of the message ssent by this process∗/
int seqNumber;
/∗Sequence number of the set of messages to deliver in the same round!∗/
int sn;
/∗Sets the beginning and the end of the rounds∗/
boolean wait;
/∗ Set of delivered messages. ∗/
LinkedList delivered;
/∗ Set of unordered messages. ∗/
LinkedList unordered;

public ConsensusTOSession(Layer l) {

6.6 Hands-On 259

super(l);
}

public void handle(Event e) {
if (e instanceof ChannelInit)

handleChannelInit((ChannelInit)e);
else if (e instanceof ProcessInitEvent)

handleProcessInitEvent((ProcessInitEvent)e);
else if (e instanceof SendableEvent){

if (e.getDir()==Direction.DOWN)
handleSendableEventDOWN((SendableEvent)e);

else

handleSendableEventUP((SendableEvent)e);
} else if (e instanceof ConsensusDecide)

handleConsensusDecide((ConsensusDecide)e);
else{

e.go();
}

}

public void handleChannelInit (ChannelInit e){
e.go();

this.channel = e.getChannel();

delivered=new LinkedList();
unordered=new LinkedList();

sn=1;
wait=false;

}

public void handleProcessInitEvent (ProcessInitEvent e){
iwp=e.getProcessSet().getSelfProcess().getInetWithPort();
e.go();

}

public void handleSendableEventDOWN (SendableEvent e){
ExtendedMessage om=(ExtendedMessage)e.getMessage();
//inserting the global seq number of this msg
om.pushInt(seqNumber);
e.go();

//increments the global seq number
seqNumber++;

}

public void handleSendableEventUP (SendableEvent e){
ExtendedMessage om=(ExtendedMessage)e.getMessage();
int seq=om.popInt();

//checks if the msg has already been delivered.
ListElement le;
if (! isDelivered((InetWithPort)e.source,seq)){

le=new ListElement(e,seq);
unordered.add(le);

}

//let’s see if we can start a new round!
if (unordered.size()!=0 && !wait){

wait=true;
//sends our proposal to consensus protocol!
ConsensusPropose cp;
byte[] bytes=null;
cp = new ConsensusPropose(channel, Direction.DOWN, this);
bytes=serialize(unordered);

260 6. Consensus Variants

OrderProposal op=new OrderProposal(bytes);
cp.value=op;

cp.go();
}

}

public void handleConsensusDecide (ConsensusDecide e){
LinkedList decided=deserialize(((OrderProposal)e.decision).bytes);

//The delivered list must be complemented with the msg in the decided list!
for(int i=0;i<decided.size(); i++){

if (! isDelivered ((InetWithPort)((ListElement)decided.get(i)).se.source,
((ListElement)decided.get(i)). seq)){

//if a msg that is in decided doesn’t yet belong to delivered , add it!
delivered.add(decided.get(i));

}
}

//update unordered list by removing the messages that are in the delivered list
for(int j=0;j<unordered.size();j++){

if (isDelivered ((InetWithPort)((ListElement)unordered.get(j)).se.source,
((ListElement)unordered.get(j)).seq)){

unordered.remove(j);
j−−;

}
}

decided=sort(decided);

//deliver the messages in the decided list , which is already ordered!
for(int k=0;k<decided.size();k++){

((ListElement)decided.get(k)).se .go();
}
sn++;
wait=false;

}

boolean isDelivered(InetWithPort source,int seq){
for(int k=0;k<delivered.size();k++){

if (((ListElement)delivered.get(k)).getSE().source.equals(source) &&
((ListElement)delivered.get(k)).getSeq()==seq)
return true;

}

return false;
}

LinkedList sort(LinkedList list){
return list ;

}

byte[] intToByteArray(int i) {
byte[] ret = new byte[4];

ret [0] = (byte) ((i & 0xff000000) >> 24);
ret [1] = (byte) ((i & 0x00ff0000) >> 16);
ret [2] = (byte) ((i & 0x0000ff00) >> 8);
ret [3] = (byte) (i & 0x000000ff);

return ret;
}

int byteArrayToInt(byte[] b, int off) {
int ret = 0;

6.6 Hands-On 261

ret |= b[off] << 24;
ret |= (b[off+1] << 24) >>> 8; // must be done this way because of
ret |= (b[off+2] << 24) >>> 16; // java’s sign extension of <<

ret |= (b[off+3] << 24) >>> 24;

return ret;
}

private byte[] serialize (LinkedList list) {
ByteArrayOutputStream data=new ByteArrayOutputStream();
byte[] bytes=null;

//number of elements of the list:int
data.write(intToByteArray(list. size ()));

//now, serialize each element
for(int i=0;i<list . size (); i++){

//getting the list element
ListElement le=(ListElement)list.get(i);
//sequence number:int
data.write(intToByteArray(le.seq));
//class name
bytes=le.se .getClass ().getName().getBytes();
data.write(intToByteArray(bytes.length));
data.write(bytes ,0,bytes.length);
//source port:int
data.write(intToByteArray(((InetWithPort)le.se.source).port));
//source host:string
String host=((InetWithPort)le.se.source).host.getHostName();
bytes=host.getBytes();
data.write(intToByteArray(bytes.length));
data.write(bytes ,0,bytes.length);
// message
bytes=le.se .getMessage().toByteArray();
data.write(intToByteArray(bytes.length));
data.write(bytes ,0,bytes.length);

}

//creating the byte []
bytes=data.toByteArray();
return bytes;

}

private LinkedList deserialize(byte[] data) {
LinkedList ret=new LinkedList();
int curPos=0;

//getting the size of the list
int listSize =byteArrayToInt(data, curPos);
curPos+=4;

//getting the elements of the list
for(int i=0;i<listSize ; i++){

//seq number
int seq=byteArrayToInt(data, curPos);
curPos+=4;
//class name
int aux size=byteArrayToInt(data, curPos);
String className=new String(data,curPos+4,aux size);
curPos+=aux size+4;
//creating the event
SendableEvent se=null;

se = (SendableEvent) Class.forName(className).newInstance();
// format known event attributes

262 6. Consensus Variants

se .setDir(Direction.UP);
se .setSource(this);
se .setChannel(channel);

//source:porto
int port=byteArrayToInt(data, curPos);
curPos+=4;
//source:host
aux size=byteArrayToInt(data, curPos);
String host=new String(data,curPos+4,aux size);
curPos+=aux size+4;
se .source=new InetWithPort(InetAddress.getByName(host),port);
// finally , the message
aux size=byteArrayToInt(data, curPos);
curPos+=4;

se .getMessage().setByteArray(data,curPos,aux size);
curPos+=aux size;
se . init ();
//creating the element that is the unit of the list
ListElement le=new ListElement(se,seq);
//adding this element to the list to return
ret .add(le);

}
return ret;

}
}

class ListElement{
SendableEvent se;
int seq ; /∗sequence number∗/

public ListElement(SendableEvent se, int seq){
this.se=se;
this.seq=seq;

}

SendableEvent getSE(){
return se;

}

int getSeq(){
return seq;

}
}

Try It

1. Uncomment the eighth line of the getUnTOChannel method in file Sam-

pleAppl.java, in package demo.tutorialDA. This will insert a test layer that
allows the injection of delays in messages sent between process 0 and
process 2. After modifying the file, it is necessary to compile it.

2. Open three shells/command prompts.
3. In each shell, go to the directory where you have placed the supplied

code.
4. In each shell, launch the test application, SampleAppl, giving a different n

value (0, 1, or 2) and specifying the qos as uto.
• In shell 0, execute:

java demo/tutorialDA/SampleAppl \

6.6 Hands-On 263

-f demo/tutorialDA/procs \

-n 0 \

-qos uto

• In shell 1, execute:

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

-qos uto

• In shell 2, execute:

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 2 \

-qos uto

Note: If the error NoClassDefError has appeared, confirm that you are
at the root of the supplied code.

Now that processes are launched and running, you may try the following
execution:

1. In shell 0, send a message M1 (bcast M1 and press Enter).
• Note that no process received the message M1.

2. In shell 1, send a message M2.
• Note that all processes received message M1. The consensus decided

to deliver M1.
3. In shell 1, send a message M3.

• Note that all processes received message M2 and M3. Now, the con-
sensus decided to deliver these both messages.

4. Confirm that all processes received M1, M2, and M3 in the same order.
5. You can keep repeating these steps, in order to introduce some delays,

and checking that all processes receive all messages in the same order.

6.6.2 Consensus-Based Non-blocking Atomic Commit

The communication stack used to implement the protocol is the following:

264 6. Consensus Variants

Application
NBAC

(implemented by Consensus-Based NBAC)
Uniform Consensus

(implemented by Flooding UC)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The protocol implementation is depicted in Listing 6.2.

Listing 6.2. Consensus-based Non-Blocking Atomic Commit implementation

package appia.protocols.tutorialDA.consensusNBAC;

public class ConsensusNBACSession extends Session {
public ConsensusNBACSession(Layer layer) {

super(layer);
}

public void handle(Event event) {
if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent)event);
else if (event instanceof Crash)

handleCrash((Crash)event);
else if (event instanceof NBACPropose)

handleNBACPropose((NBACPropose)event);
else if (event instanceof ConsensusDecide)

handleConsensusDecide((ConsensusDecide)event);
else {

event.go();
}

}

private HashSet delivered=null;
private ProcessSet correct=null;
private int proposal;

private void init() {
delivered=new HashSet();
proposal=1;

}

private void handleProcessInit(ProcessInitEvent event) {
correct=event.getProcessSet();
init ();
event.go();

}

private void handleCrash(Crash crash) {
correct .setCorrect(crash.getCrashedProcess(),false);
crash.go();

all delivered (crash.getChannel());
}

private void handleNBACPropose(NBACPropose event) {
if (event.getDir() == Direction.DOWN) {

event.getExtendedMessage().pushInt(event.value);

6.6 Hands-On 265

event.go();
} else {

SampleProcess p i=correct.getProcess((InetWithPort)event.source);
int v=event.getExtendedMessage().popInt();

delivered.add(p i);
proposal∗=v;

all delivered (event.getChannel());
}

}

private void all delivered(Channel channel) {
boolean all correct=true;
int i ;
for (i=0 ; i < correct.getSize () ; i++) {

SampleProcess p=correct.getProcess(i);
if (p != null) {

if (p.isCorrect ()) {
if (! delivered .contains(p))

return;
} else {

all correct =false;
}

}
}

if (! all correct)
proposal=0;

ConsensusPropose ev=new ConsensusPropose(channel, Direction.DOWN, this);
ev.value=new IntProposal(proposal);
ev.go();

init ();
}

private void handleConsensusDecide(ConsensusDecide event) {
NBACDecide ev=new NBACDecide(event.getChannel(), Direction.UP, this);
ev.decision=((IntProposal)event.decision). i ;
ev.go();

}
}

Try It

1. Setup
a) Open three shells/command prompts.
b) In each shell, go to the directory where you have placed the supplied

code.
c) In each shell, launch the test application, SampleAppl, giving a dif-

ferent n value (0, 1, or 2) and specifying the qos as nbac.
• In shell 0, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 0 \

-qos nbac

266 6. Consensus Variants

• In shell 1, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

-qos nbac

• In shell 2, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 2 \

-qos nbac

d) If the error NoClassDefError has appeared, confirm that you are at
the root of the supplied code.

e) Start the prefect failure detector by typing startpfd in each shell.
2. Run: Now that processes are launched and running, let us try the follow-

ing execution:
a) In shell 0, propose 1 (type atomic 1 and press enter). Any value

different from 0 is considered 1, and 0 is 0.
b) In shell 1, propose 1. (type atomic 1 and press Enter).
c) In shell 2, propose 1. (type atomic 1 and press Enter).
d) Note that all processes commit the value 1.
e) In shell 0, propose 1.
f) In shell 1, propose 1.
g) In shell 2, propose 0. (type atomic 0 and press Enter).
h) Note that all processes commit the value 0.
i) In shell 1, propose 1.
j) In shell 2, propose 1.
k) In shell 0, kill the test application process.
l) Note that all processes commit the value 0.

6.6.3 Consensus-Based Group Membership

The communication stack used to implement the protocol is the following:

6.6 Hands-On 267

Application
Group Membership

(Consensus-based GM)
Uniform Consensus

(implemented by Flooding UC)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The protocol implementation is depicted in Listing 6.3. It follows Algo-
rithm 6.4 very closely. The view is represented by an object of class View from
package appia.protocols.tutorialDA.membershipUtils. It contains two attributes,
the members that compose it, and its id. The id is an integer. The View class
extends Proposal, permitting the comparison between views and allowing its
use as a proposal value for consensus. When comparing views, the lowest is
the one with the highest id.

Listing 6.3. Consensus-Based Group Membership

package appia.protocols.tutorialDA.consensusMembership;

public class ConsensusMembershipSession extends Session {
public ConsensusMembershipSession(Layer layer) {

super(layer);
}

public void handle(Event event) {
if (event instanceof ProcessInitEvent) {

handleProcessInit((ProcessInitEvent)event);
return;

}
if (event instanceof Crash) {

handleCrash((Crash)event);
return;

}
if (event instanceof ConsensusDecide) {

handleConsensusDecide((ConsensusDecide)event);
return;

}

event.go();
}

private View view=null;
private ProcessSet correct=null;
private boolean wait;

private void handleProcessInit(ProcessInitEvent event) {
event.go();

view=new View();
view.id=0;
view.memb=event.getProcessSet();
correct=event.getProcessSet();
wait=false;

268 6. Consensus Variants

ViewEvent ev=new ViewEvent(event.getChannel(), Direction.UP, this);
ev.view=view;
ev.go();

}

private void handleCrash(Crash crash) {
correct .setCorrect(crash.getCrashedProcess(),false);
crash.go();

newMembership(crash.getChannel());
}

private void newMembership(Channel channel) {
if (wait)

return;

boolean crashed=false;
int i ;
for (i=0 ; i < correct.getSize () ; i++) {

SampleProcess p=correct.getProcess(i);
SampleProcess m=view.memb.getProcess(p.getInetWithPort());
if (! p.isCorrect() && (m != null)) {

crashed=true;
}

}
if (! crashed)

return;

wait=true;

int j ;
ProcessSet trimmed memb=new ProcessSet();
for (i=0,j=0 ; i < correct.getSize () ; i++) {

SampleProcess p=correct.getProcess(i);
if (p.isCorrect ())

trimmed memb.addProcess(p,j++);
}

View v=new View();
v.id=view.id+1;
v.memb=trimmed memb;

ConsensusPropose ev=new ConsensusPropose(channel,Direction.DOWN,this);
ev.value=v;
ev.go();

}

private void handleConsensusDecide(ConsensusDecide event) {
view=(View)event.decision;

wait=false;

ViewEvent ev=new ViewEvent(event.getChannel(),Direction.UP,this);
ev.view=view;
ev.go();

}
}

Try It

1. Setup
a) Open three shells/command prompts.

6.6 Hands-On 269

b) In each shell, go to the directory where you have placed the supplied
code.

c) In each shell launch the test application, SampleAppl, giving a dif-
ferent n value (0, 1, or 2) and specifying the qos as cmem.
• In shell 0, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 0 \

-qos cmem

• In shell 1, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 1 \

-qos cmem

• In shell 2, execute

java demo/tutorialDA/SampleAppl \

-f demo/tutorialDA/procs \

-n 2 \

-qos cmem

d) If the error NoClassDefError has appeared, confirm that you are at
the root of the supplied code.

e) Start the prefect failure detector by typing startpfd in each shell.
2. Run: Now that processes are launched and running, let us try the follow-

ing execution:
a) Observe that an initial view with all members is shown.
b) In shell 0, kill the test application process.
c) Observe that a new view without the failed process is shown.
d) Now, in shell 1, kill the test application process.
e) Observe that in the remaining process a new view, with only one

member, is delivered.

6.6.4 TRB-Based View Synchrony

The communication stack used to implement the protocol is the following:

270 6. Consensus Variants

Application
View Synchrony

(implemented by TRB-based VS)
Membership

(implemented by Consensus-based Membership)
Reliable Causal Order

(implemented by Garbage Collection Of Past)
Reliable Broadcast

(implemented by Lazy RB)
TRB

(implemented by Consensus-based TRB)
Uniform Consensus

(implemented by Flooding UC)
Perfect Failure Detector

(implemented by TcpBasedPFD)
Best-Effort Broadcast

(implemented by Basic Broadcast)
Perfect Point-to-Point Links

(implemented by TcpBasedPerfectP2P)

The role of the significant layers is explained below.

ConsensusTRB. This layer implements the consensus-based terminating re-
liable broadcast algorithm. It follows Algorithm 6.2 very closely. It func-
tions by assuming that all processes propose the same message for deliv-
ery. The result is the message proposed or a failure notification. The layer
receives the message proposal within an event of class TRBEvent. It then
asks for a consensus decision, either proposing the message or a failure
notification. The consensus decision is then notified upward in another
TRBEvent.

TRBViewSync. This layer implements the TRB-based View Synchrony algo-
rithm. It follows Algorithm 6.5–6.6 closely. Whenever a new view is given
by the underlying membership layer it flushes each member by request-
ing it to stop sending messages. This is done with a BlockEvent. When
the application acknowledges, by sending a BlockOkEvent, it starts to dis-
seminate the messages delivered. This is done in rounds, in which the
process with rank equal to the round number disseminates the messages
it has delivered, using the Terminating Reliable Broadcast primitive. To
do this, the layer sends a TRBEvent either with the set, of delivered mes-
sages if the round number is equal to its rank, or with null. It then waits
for the return TRBEvent, delivers any message not yet delivered contained
in the received set and advances to the next round. When all rounds are
terminated the new view is sent upward. To identify the messages, so
as to be able to determine if the message was already delivered or not,
each message sent by a process is given a unique identifier, implemented

6.6 Hands-On 271

as a simple sequence number. Therefore, the pair (sender process, id)
globally identifies each message.

The Consensus-Based Terminating Reliable Broadcast implementation is
depicted in Listing 6.4 and the TRB-Based View Synchrony implementation
is depicted in Listing 6.5.

Listing 6.4. Consensus-Based Terminating Reliable Broadcast implementation

package appia.protocols.tutorialDA.consensusTRB;

public class ConsensusTRBSession extends Session {
public ConsensusTRBSession(Layer layer) {

super(layer);
}

public void handle(Event event) {
if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent) event);
else if (event instanceof Crash)

handleCrash((Crash) event);
else if (event instanceof ConsensusDecide)

handleConsensusDecide((ConsensusDecide) event);
else if (event instanceof TRBSendableEvent)

handleTRBSendableEvent((TRBSendableEvent) event);
else if (event instanceof TRBEvent)

handleTRBEvent((TRBEvent) event);
else {

event.go();
}

}

private TRBProposal proposal;
private ProcessSet correct = null;
private SampleProcess src;

private void handleProcessInit(ProcessInitEvent event) {
event.go();

correct = event.getProcessSet();
init ();

}

private void init() {
proposal = null;
src = null;
// correct filled at handleProcessInit

}

private void handleCrash(Crash crash) {
correct .setCorrect(crash.getCrashedProcess(), false);
crash.go();

failed (crash.getChannel());
}

private void handleTRBEvent(TRBEvent event) {
src = correct.getProcess(event.p);

if (src . isSelf ()) {
TRBSendableEvent ev =

new TRBSendableEvent(event.getChannel(), Direction.DOWN, this);
ev.getExtendedMessage().pushObject(event.m);
ev.go();

}

272 6. Consensus Variants

failed (event.getChannel());
}

private void handleTRBSendableEvent(TRBSendableEvent event) {
if (proposal != null)

return;

proposal = new TRBProposal(event.getExtendedMessage().popObject());

ConsensusPropose ev =
new ConsensusPropose(event.getChannel(), Direction.DOWN, this);

ev.value = proposal;
ev.go();

}

private void failed(Channel channel) {
if (proposal != null)

return;
if ((src == null) || src . isCorrect())

return;

proposal = new TRBProposal(true);

ConsensusPropose ev = new ConsensusPropose(channel, Direction.DOWN, this);
ev.value = proposal;
ev.go();

}

private void handleConsensusDecide(ConsensusDecide event) {
if (event.decision instanceof TRBProposal) {

TRBEvent ev = new TRBEvent(event.getChannel(), Direction.UP, this);
ev.p = src.getInetWithPort();
if (((TRBProposal) event.decision).failed)

ev.m = null;
else

ev.m = ((TRBProposal) event.decision).m;
ev.go();

init ();
} else {

event.go();
}

}
}

Listing 6.5. TRB-Based View Synchrony implementation

package appia.protocols.tutorialDA.trbViewSync;

public class TRBViewSyncSession extends Session {
public TRBViewSyncSession(Layer layer) {

super(layer);
}

public void handle(Event event) {
if (event instanceof ViewEvent)

handleView((ViewEvent)event);
else if (event instanceof BlockOkEvent)

handleBlockOkEvent((BlockOkEvent)event);
else if (event instanceof TRBEvent)

handleTRBEvent((TRBEvent)event);
else if (event instanceof SendableEvent) {

if (event.getDir() == Direction.DOWN)

6.6 Hands-On 273

handleCSVSBroadcast((SendableEvent)event);
else

handleRCODeliver((SendableEvent)event);
} else {
event.go();
}

}

private LinkedList pending views=new LinkedList();
private HashSet delivered=new HashSet();
private View current view=null;
private View next view=null;
private boolean flushing=false;
private boolean blocked=true;
/∗∗
∗ trb done counts the number of processes for wich TRB was used.
∗ This is possible because the TRB is used one at a time.
∗/

private int trb done;

private int msg id=0;

private void handleView(ViewEvent event) {
if (event.view.id == 0) {

current view=event.view;
blocked=false;

event.go();

ReleaseEvent ev=new ReleaseEvent(event.getChannel(), Direction.UP, this);
ev.go();

} else {
pending views.addLast(event.view);

}

moreViews(event.getChannel());
}

private void handleCSVSBroadcast(SendableEvent event) {
if (blocked)

return;
// Assert we have a view
if (current view == null)

return;

// Chooses a unique identifier for the message
++msg id;

Msg m = new Msg(current view.memb.getSelfProcess(),
msg id,
event.getClass ().getName(),
event.getMessage().toByteArray());

delivered .add(m);

SendableEvent ev=(SendableEvent)event.cloneEvent();
ev.source=current view.memb.getSelfProcess().getInetWithPort();
ev.setDir(Direction.UP);
ev.setSource(this);
ev. init ();
ev.go();

((ExtendedMessage)event.getMessage()).pushInt(msg id);
((ExtendedMessage)event.getMessage()).pushInt(current view.id);
event.go();

}

274 6. Consensus Variants

private void handleRCODeliver(SendableEvent event) {
SampleProcess src=current view.memb.getProcess((InetWithPort)event.source);
ExtendedMessage m=(ExtendedMessage)event.getMessage();
int vid=m.popInt();
// Message identifier
int mid=m.popInt();

if (current view.id != vid)
return;

Msg msg = new Msg(src, mid, event.getClass().getName(), m.toByteArray());
if (delivered.contains(msg))

return;
delivered .add(msg);

event.go();
}

private void moreViews(Channel channel) {
if (flushing)

return;
if (pending views.size() == 0)

return;

next view=(View)pending views.removeFirst();
flushing=true;

BlockEvent ev=new BlockEvent(channel, Direction.UP, this);
ev.go();

}

private void handleBlockOkEvent(BlockOkEvent event) {
blocked=true;
trb done=0;

SampleProcess p i = current view.memb.getProcess(trb done);
TRBEvent ev = new TRBEvent(event.getChannel(), Direction.DOWN, this);
ev.p = p i.getInetWithPort();
if (p i . isSelf ()) {

ev.m=delivered;
} else {

// pushes an empty set
ev.m=new HashSet();

}
ev.go();

}

private void handleTRBEvent(TRBEvent event) {
HashSet del=(HashSet)event.m;
trb done++;

if (del != null) {
Iterator iter = del. iterator ();
while (iter .hasNext()) {

Msg m = (Msg) iter.next();

if (! delivered.contains(m)) {
delivered .add(m);

SendableEvent ev = (SendableEvent) Class.forName(m.eventName).newInstance();
ev.getMessage().setByteArray(m.data, 0, m.data.length);
ev.setChannel(event.getChannel());
ev.setDir(Direction.UP);
ev.setSource(this);
ev. init ();
ev.go();

6.7 Exercices 275

}
}

}

if (trb done < current view.memb.getSize()) {
SampleProcess p i = current view.memb.getProcess(trb done);
TRBEvent ev = new TRBEvent(event.getChannel(), Direction.DOWN, this);
ev.p = p i.getInetWithPort();
ev.m = new ExtendedMessage();
if (p i . isSelf ()) {

ev.m=delivered;
} else {

// proposes an empty set
ev.m=new HashSet();

}
ev.go();

} else {
ready(event.getChannel());

}
}

private void ready(Channel channel) {
if (! blocked)

return;
// because TRB was used one at a time,
// and this function is only invoqued when all are
// done, its not required to check the ”trb done” variable.

current view=next view;
flushing=false;
blocked=false;

ViewEvent ev1=new ViewEvent(channel, Direction.UP, this);
ev1.view=current view;
ev1.go();

ReleaseEvent ev2=new ReleaseEvent(channel, Direction.UP, this);
ev2.go();

moreViews(channel);
}

}

6.7 Exercices

Exercise 6.1 Would it make sense to combine the properties of best-effort
broadcast with the total-order property?

Exercise 6.2 What happens in our “Consensus-Based Total Order” algo-
rithm if the set of messages decided on is not sorted deterministically after
the decision but prior to the proposal? What happens in that algorithm if the
set of messages decided on is not sorted deterministically at all?

Exercise 6.3 Discuss the specifications and algorithms of total order broad-
cast abstractions in fail-silent and fail-recovery models.

276 6. Consensus Variants

Exercise 6.4 Give a specification of a state machine replication abstraction
and an underlying algorithm to implement it using a total order broadcast
abstraction.

Exercise 6.5 Can we implement TRB with the eventually perfect failure de-
tector �P if we assume that at least one process can crash? What if we assume
that any number of processes can crash and every process can trbBroadcast
messages?

Exercise 6.6 Can we implement TRB with the perfect failure detector P
if we assume that any number of processes can crash and every process can
trbBroadcast messages?

Exercise 6.7 Devise two algorithms that, without consensus, implement
weaker specifications of NBAC where we replace the termination property
with the following ones:

• (1) weak termination: let pi be some process; if pi does not crash then all
correct processes eventually decide;

• (2) very weak termination: if no process crashes, then all processes decide.

Exercise 6.8 Can we implement NBAC with the eventually perfect failure
detector �P if we assume that at least one process can crash? What if we
consider a weaker specification of NBAC where the agreement was not re-
quired?

Exercise 6.9 Do we need the perfect failure detector P to implement NBAC
if we consider a system where at least two processes can crash but a majority
is correct? What if we assume that at most one process can crash?

Exercise 6.10 Give an algorithm that implements a view synchronous ab-
straction such that a single consensus instance is used for every view change
(unlike Algorithm 6.5–6.6), and every process directly vsDelivers every mes-
sage it vsBroadcasts (unlike Algorithm 6.7–6.8).

6.8 Solutions

Solution 6.1 The resulting abstraction would not make much sense in a
failure-prone environment as it would not preclude the following scenario.
Assume that a process p1 broadcasts a bunch of messages and then crashes.
Some correct processes might end up delivering all those messages (in the
same order) whereas other correct processes might end up not delivering any
message. �

6.8 Solutions 277

Solution 6.2 If the deterministic sorting is done prior to the proposal, and
not a posteriori upon a decision, the processes would not agree on a set but
on a sequence, i.e., an ordered set. If they were to toDeliver the messages in
this order, we would still have to ensure the total order property.

If the messages that we agree on through consensus are not sorted deter-
ministically within every batch (neither a priori nor a posteriori), then the
total order property is not ensured. Even if the processes decide on the same
batch of messages, they might toDeliver the messages within this batch in
a different order. In fact, the total order property would be ensured with
respect only to the batches of messages, and not to the messages themselves.
We thus get a coarser granularity in the total order.

We could avoid using the deterministic sort function at the cost of propos-
ing a single message at a time in the consensus abstraction. This means that
we would need exactly as many consensus instances as there are messages
exchanged between the processes. If messages are generated very slowly by
processes, the algorithm ends up using one consensus instance per message
anyway. If the messages are generated rapidly, then it is beneficial to use
several messages per instance: within one instance of consensus, several mes-
sages would be gathered, i.e., every message of the consensus algorithm would
concern several messages to toDeliver. Agreeing on several messages at the
same time reduces the number of times we use the consensus protocol. �

Solution 6.3 Our total order specification and total order broadcast algo-
rithm in the fail-stop model directly apply to the fail-silent model. In this
case, we consider underlying uniform reliable broadcast and consensus algo-
rithms in the fail-silent model and assume a correct majority. We discuss
below a specification and an algorithm in the fail-recovery model.

We apply the same sort of approach we have used to derive a reliable
broadcast or a consensus abstraction for the fail-recovery model. We depart
from an abstraction designed from the fail-stop model and adapt the follow-
ing aspects: interface with adjacent modules, logging of relevant states, and
definition of recovery procedures. For the algorithm, we make use of the ab-
stractions implemented in the fail-recovery model, e.g., logged consensus and
reliable broadcast.

We illustrate here just the uniform definition, which is presented in Mod-
ule 6.7. Note that the module exports to the upper layers the sequence of
delivered (and ordered) messages.

To implement the abstraction, we give an algorithm (Algorithm 6.9) that
closely follows the algorithm for the fail-stop model presented in Section 6.1.
The algorithm works as follows. Messages sent by the upper layer are dis-
seminated using the reliable broadcast algorithm for the fail-recovery model.
The total order algorithm keeps two sets of messages: the set of unordered
messages (these are the messages received from the underlying reliable broad-
cast module) and the set of ordered messages (obtained by concatenating the

278 6. Consensus Variants

Module 6.7 Interface and properties of logged total order broadcast

Module:

Name: LoggedUniformTotalOrder (luto).

Events:

Request: 〈 lutoBroadcast | m 〉: Used to broadcast message m.

Indication: 〈 lutoDeliver | delivered 〉: Used to deliver the log of all ordered
messages up to the moment the indication is generated.

Properties:

LUTO1: Total order: Let delivered i be the sequence of messages delivered
to process pi. For any pair (i, j), either delivered i is a prefix of delivered j

or delivered j is a prefix of delivered i.

LRB1 to LRB3: from reliable broadcast in the fail-recovery model.

LUTO4: Uniform Agreement: If there exists pi such that m ∈ delivered i

then eventually m ∈ delivered j at every process pj that eventually remains
permanently up.

results of several consensus instances). A new consensus instance is started
when one notices that there are unordered messages that have not yet been
ordered by previous consensus instances. The wait flag is also used to ensure
that consensus instances are invoked in serial order. Upon a crash and recov-
ery, the total order module may reinvoke the same consensus instance more
than once. Before invoking the ith instance of consensus, the total order al-
gorithm stores the values to be proposed in stable storage. This ensures that
a given instance of consensus is always invoked with exactly the same param-
eters. This may not be strictly needed (depending on the implementation
of consensus) but is consistent with the intuitive notion that each process
proposes a value by storing it in stable storage.

The algorithm has the interesting feature of never storing the unordered
and delivered sets of messages. These sets are simply reconstructed upon
recovery from the stable storage kept internally by the reliable broadcast
and consensus implementations. Since the initial values proposed for each
consensus instance are logged, the process may reinvoke all past instances of
consensus to obtain all messages ordered in previous rounds.

The algorithm requires at least one communication step to execute the
reliable broadcast and at least two communication steps to execute the con-
sensus instance. Therefore, even if no failures occur, at least three commu-
nication steps are required. No stable storage access is needed besides those
needed by the underlying consensus module. �

Solution 6.4 A state machine consists of variables and commands that trans-
form its state and may produce some output. Commands consist of deter-
ministic programs such that the outputs of the state machine are solely de-

6.8 Solutions 279

Algorithm 6.9 Logged Total Order Broadcast

Implements:
LoggedUniformTotalOrder (luto).

Uses:
LoggedReliableBroadcast (lrb);
LoggedUniformConsensus (luc).

upon event 〈 Init 〉 do
unordered := ∅; delivered := ∅;
sn := 0; wait := false;
forall k do propose[k] := ⊥;

upon event 〈 Recovery 〉 do
sn := 0; wait := false;
retrive (propose);
while propose[sn] �= ⊥ do

trigger 〈 lucPropose | sn, propose[sn] 〉;
wait 〈 lucDecided | sn, decided 〉;
decided := sort (decided); // some deterministic order;
delivered := delivered ⊕ decided;
sn := sn +1;

trigger 〈 lutoDeliver | delivered 〉;

upon event 〈 lutoBroadcast | m 〉 do
trigger 〈 lrbBroadcast | m 〉;

upon event 〈 lrbDeliver | msgs 〉 do
unordered := unordered ∪ msgs;

upon (unordered\decided �= ∅) ∧ (wait = false) do
wait := true;
propose[sn] := unordered\delivered; store (propose[sn]);
trigger 〈 lucPropose | sn, propose[sn] 〉;

upon event 〈 lucDecided | sn, decided 〉 do
decided := sort (decided); // some deterministic order;
delivered := delivered ⊕ decided;
trigger 〈 lutoDeliver | delivered 〉;
sn := sn +1; wait := false;

termined by the initial state and the sequence of commands it has executed.
A state machine can be made fault-tolerant by replicating it on different
processes.

A replicated state machine abstraction can be characterized by the prop-
erties listed in Module 6.8. Basically, its interface has simply two primitives:
i) an rsmExecute primitive used by a client to invoke a command of the state
machine and ii) an rsmOutput used by the state machine to produce an out-
put in response to the execution of a command. For the sake of brevity, we

280 6. Consensus Variants

Module 6.8 Interfaces and properties of a Replicated State Machine

Module:

Name: ReplicatedStateMachine (rsm).

Events:

Request: 〈 rsmExecute | command 〉: Used to execute a command.

Indication: 〈 rsmOutput | output 〉: Used to indicate the output of a
command.

Properties:

RSM1: Agreement All correct processes observe the exact same se-
quence of outputs.
RSM2: Termination Every command eventually produces an output.

Algorithm 6.10 Replicated State Machine

Implements:
ReplicatedStateMachine (rsm).

Uses:
UniformTotalOrder (uto);

upon event 〈 Init 〉 do
state := initial-state ();

upon event 〈 rsmExecute | command 〉 do
trigger 〈 utoBroadcast | command 〉;

upon event 〈 utoDeliver | pi, command 〉 do
(output, newstate) := execute (command, state);
state := newstate;
if output �= ⊥ then

trigger 〈 rsmOutput | output 〉;

assume that the command parameter of the rsmExecute primitive includes
both the name of the command to be executed and any relevant parameter
for the execution of such a command.

As an example, an atomic register could be implemented as a state ma-
chine. In this case, the state of the machine would hold the up-to-date value
of the register and the relevant commands would be i) a write(v) command
that would have the value v to be written as an input parameter and ii) a
read command that would cause the state machine to output the value of the
register. Of course, more sophisticated objects can be replicated the same
way.

Algorithm 6.10 implements a replicated state machine simply by enforc-
ing all commands to be disseminated and ordered using a uniform total order

6.8 Solutions 281

broadcast primitive. �

Solution 6.5 No. Consider TRBi, i.e., the sender is process pi. We discuss
below why it is impossible to implement TRBi with �P if one process can
crash. Consider an execution E1 where process pi crashes initially and con-
sider some correct process pj . Due to the termination property of TRBi,
there must be a time T at which pj trbDelivers Fi. Consider an execution E2

that is similar to E1 up to time T , except that pi is correct: pi’s messages
are delayed until after time T and the failure detector behaves as in E1 until
after time T . This is possible because the failure detector is only eventually
perfect. Up to time T , pj cannot distinguish E1 from E2 and trbDelivers
Fi. Due to the agreement property of TRBi, pi must trbDeliver Fi as well.
Due to the termination property, pi cannot trbDeliver two messages and will
contradict the validity property of TRBi. �

Solution 6.6 We explain below that if we have TRBi abstractions, for every
process pi, and if we consider a model where failures cannot be predicted,
then we can emulate a perfect failure detector. This means that the perfect
failure detector is not only sufficient to solve TRB, but also necessary. The
emulation idea is simple. Every process trbBroadcasts a series of messages
to all processes. Every process pj that trbDelivers Fi, suspects process pi.
The strong completeness property would trivially be satisfied. Consider the
strong accuracy property (i.e., no process is suspected before it crashes). If
pj trbDelivers Fi, then pi is faulty. Given that we consider a model where
failures cannot be predicted, pi must have crashed. �

Solution 6.7 The idea of the first algorithm is the following. It uses a per-
fect failure detector. All processes bebBroadcast their proposal to process
pi. This process would collect the proposals from all processes that it does
not suspect and compute the decision: 1 if all processes propose 1, and 0
otherwise, i.e., if some process proposes 0 or is suspected to have crashed.
Then pi bebBroadcasts the decision to all other processes and decides. Any
process that bebDelivers the message decides accordingly. If pi crashes, then
all processes are blocked. Of course, the processes can figure out the deci-
sion by themselves if pi crashes after some correct process has decided, or if
some correct process decides 0. However, if all correct processes propose 1
and pi crashes before any correct process, then no correct process can decide.
This algorithm is also called the Two-Phase Commit (2PC) algorithm. It
implements a variant of atomic commitment that is blocking.

The second algorithm is simpler. All processes bebBroadcast their pro-
posals to all processes. Every process waits from proposals from all other
processes. If a process bebDelivers 1 from all processes it decides 1; other-
wise, it decides 0. Note that this algorithm does not make use of any failure

282 6. Consensus Variants

detector. �

Solution 6.8 The answer is no, and, to explain why, we consider an execution
E1 where all processes are correct and propose 1, except some process pi which
proposes 0 and crashes initially. Due to the abort-validity property, all correct
processes decide 0. Let T be the time at which one of these processes, say,
pj , decides 0. Consider an execution E2 that is similar to E1 except that pi

proposes 1. Process pj cannot distinguish the two executions (because pi did
not send any message) and decides 0 at time T . Consider now an execution
E3 that is similar to E2, except that pi is correct but its messages are all
delayed until after time T . The failure detector behaves in E3 as in E2: this
is possible because it is only eventually perfect. In E3, pj decides 0 and
violates commit-validity: all processes are correct and propose 1.

In this argument, the agreement property of NBAC was not explicitly
needed. This shows that even a specification of NBAC where agreement was
not needed could not be implemented with an eventually perfect failure de-
tector if some process crashes. �

Solution 6.9 Consider first a system where at least two processes can crash
but a majority is correct. We argue below that in this case the perfect failure
detector is not needed. To show that, we exhibit a failure detector that, in
a precise sense, is strictly weaker than the perfect failure detector and that
helps in solving NBAC.

The failure detector in question is denoted by ?P , and called the anony-
mously perfect perfect failure detector. This failure detector ensures the strong
completess and eventual strong accuracy of an eventually perfect failure detec-
tor, plus the following anonymous detection property: every correct process
outputs a specific value F iff some process has crashed. Given that we assume
a majority of the correct processes, failure detector ?P implements uniform
consensus and we can build a consensus module. Now we give the idea of an
algorithm that uses ?P and a consensus module to implement NBAC.

The idea of the algorithm is the following. All processes bebBroadcast
their proposal to all processes. Every process pi waits either (1) to bebDeliver
1 from all processes, (2) to bebDeliver 0 from some process, or (3) to output
F . In case (1), pi invokes consensus with 1 as a proposed value. In cases (2)
and (3), pi invokes consensus with 0. Then pi decides the value output by
the consensus module.

Now we discuss in which sense ?P is strictly weaker than P. Assume a
system where at least two processes can crash. Consider an execution E1

where two processes pi and pj crash initially and E2 is an execution where
only pi initially crashes. Let pk be any correct process. Using ?P, at any time
T , process pk can confuse executions E1 and E2 if the messages of pj are
delayed. Indeed, pk will output F and know that some process has indeed
crashed but will not know which one.

6.8 Solutions 283

Hence, in a system where two processes can crash but a majority is correct,
P is not needed to solve NBAC. There is a failure detector that is strictly
weaker and this failure detector solves NBAC.

Consider now the second part of the exercise and assume that at most
one process can crash. We argue below that in a system where at most one
process can crash, we can emulate a perfect failure detector if we can solve
NBAC. Indeed, the processes go through sequential rounds. In each round,
the processes bebBrodcast a message I-Am-Alive to all processes and trigger
an instance of NBAC (two instances are distinguished by the round number
at which they were triggered). In a given round r, every process waits to
decide the outcome of NBAC: if this outcome is 1, then pi moves to the next
round. If the outcome is 0, then pi waits to bebDeliver N − 1 messages and
suspects the missing message. Clearly, this algorithm emulates the behavior
of a perfect failure detector P in a system where at most one process crashes.
�

Solution 6.10 The algorithm we give here (Algorithm 6.11–6.12) uses a re-
liable broadcast, a consensus, and a perfect failure detector abstraction. It
works as follows. When a process detects the crash of at least one member of
the current view, the process initiates a collective flush procedure as in the
previous algorithm. The purpose of the flush is again to collect all messages
that have been vsDelivered by at least one process (not detected to have
crashed), and that, as such, must be vsDelivered by all processes that might
install the new view. To execute the flush, each process first blocks the nor-
mal data flow (by issuing a block request and waiting for the corresponding
blockOk). When the traffic is blocked, the process stops broadcasting and
delivering application messages. The process then broadcasts to every other
correct process its set of vsDelivered messages.

As soon as a process has collected the vsDelivered set from every other
process p that it did not detect to have crashed, p proposes a new view
through a consensus instance. More precisely, process p proposes to consen-
sus the new set of view members as well as their corresponding vsDelivered
sets. Because the flush procedure might be initiated by processes which have
detected different failures (i.e., detected the failures in different order), and
some processes might, furthermore, fail during the flush procedure, different
processes might propose different values to consensus: what is important to
note is that each of these different values contains a valid candidate for the
next view and a valid set of vsDelivered messages (the only risk here is to
end up vsDelivering messages of processes which have crashed). Consensus
guarantees that the same view is selected by all correct processes. Before
installing the new view, each process parses the vsDelivered sets of all other
correct processes and vsDelivers those messages that it has not vsDelivered
yet. Finally the new view is installed and normal operation resumed, i.e., the
traffic is unblocked.

284 6. Consensus Variants

Algorithm 6.11 Consensus-Based View Synchrony (data transmission)

Implements:
ViewSynchrony (vs).

Uses:
UniformConsensus (uc);
BestEffortBroadcast (beb);
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
current-view := (0, Π);
correct := Π ;
flushing := blocked := wait := false;
delivered := ∅;
forall i do dset[i] := ∅;

upon event 〈 vsBroadcast | m 〉 ∧ (blocked = false) do
delivered := delivered ∪ {(self, m)};
trigger 〈 vsDeliver | self, m 〉;
trigger 〈 bebBroadcast | [Data, current-view.id, m] 〉;

upon event 〈 bebDeliver | srcm,[Data, vid, m] 〉 ∧
current-view.id = vid) ∧ (blocked = false)do

if ((srcm, m) �∈ delivered) do
delivered := delivered ∪ {(srcm, m)};
trigger 〈 vsDeliver | srcm, m 〉;

Any message is vsDelivered to its sender as soon as it vsBroadcast. The
message is also added to the vsDelivered set of the sender (variable delivered).
If the sender remains correct, it will be included in the next view (remem-
ber that we assume a perfect failure detector). Furthermore, its vsDelivered
set will be made available to all non-crashed processes as an output of the
consensus that decides the next view. Since all correct processes parse the
vsDelivered set for missing messages before they install the next view, the
messages are vsDelivered in the same view at all correct processes.

During periods where the view does not need to change, the cost of vsDe-
livering a message is the same as the cost of rbDelivering it. To install a new
view, the algorithm requires the parallel execution of a reliable broadcast for
each non-crashed process, followed by a consensus execution to agree on the
next view. �

6.9 Historical Notes 285

Algorithm 6.12 Consensus-Based View Synchrony (group change)

upon event 〈 crash | pi 〉 do
correct := correct \{pi};

upon (correct ⊂ current-view.memb) ∧ (flushing = false) do
flushing := true;
trigger 〈 vsBlock 〉;

upon event 〈 vsBlockOk 〉 do
blocked := true;
trigger 〈 bebBroadcast | [Dset, current-view.id, delivered] 〉;

upon event 〈 bebDeliver | src,[Dset, vid, mset] 〉 ∧ (blocked) do
dset[vid] := dset[vid] ∪ {(src, mset)};

upon ∀p ∈ correct ∃{(p, mset)} ∈ dset[current-view.id] ∧ (wait = false) do
trigger 〈 ucPropose | current-view.id+1, correct, dset[current-view.id] 〉;
wait := true;

upon event 〈 ucDecided | id, memb, vs-dset 〉 do
forall {(p, mset)} ∈ vs-dset: p ∈ memb do

forall (srcm, m) ∈ mset: (srcm, m) �∈ delivered do
delivered := delivered ∪ { (srcm, m) };
trigger 〈 vsDeliver | srcm, m 〉;

flushing := blocked := wait := false;
delivered := ∅;
current-view := (id, memb);
trigger 〈 vsView | current-view 〉;

6.9 Historical Notes

• The total order broadcast abstraction was specified by Schneider (Schnei-
der 1990), following the work on state machine replication by Lam-
port (Lamport 1978).

• Our total order broadcast specifications and algorithms in the fail-stop
model are inspired by the work of Chandra, Hadzilacos, and Toueg (Chan-
dra and Toueg 1996; Hadzilacos and Toueg 1994).

• Our total order broadcast specification and algorithms in the crash-
recovery model were defined more recently (Boichat, Dutta, Frolund, and
Guerraoui 2003a; Boichat and Guerraoui 2005; Rodrigues and Raynal
2003).

• We considered that messages that need to be totally ordered were broadcast
to all processes in the system, and hence it was reasonable to have all
processes participate in the ordering activity. It is also possible to consider
a total order multicast abstraction where the sender can select the subset
of processes to which the message needs to be sent, and require that no
other process besides the sender and the multicast set participates in the

286 6. Consensus Variants

ordering (Rodrigues, Guerraoui, and Schiper 1998; Guerraoui and Schiper
2001).

• It is possible to design total order algorithms that exploit particular fea-
tures of concrete networks. Such algorithms can be seen as sophisticated
variants of the basic strategy presented here (Chang and Maxemchuck
1984; Veŕıssimo, Rodrigues, and Baptista 1989; Kaashoek and Tanen-
baum 1991; Moser, Melliar-Smith, Agarwal, Budhia, Lingley-Ppadopoulos,
and Archambault 1995; Rodrigues, Fonseca, and Veŕıssimo 1996; Rufino,
Veŕıssimo, Arroz, Almeida, and Rodrigues 1998; Amir, Danilov, and Stan-
ton 2000).

• The atomic commit problem was introduced by Gray (Gray 1978), together
with the two-phase commit algorithm, which we studied in the exercice sec-
tion. The atomic commit (sometimes called atomic commitment) problem
corresponds to our NBAC specification without the termination property.

• The non-blocking atomic commit (NBAC) problem was introduced by
Skeen (Skeen 1981) and was then refined (Guerraoui 2002; Delporte-Gallet,
Fauconnier, Guerraoui, Hadzilacos, Kouznetsov, and Toueg 2004). The
NBAC algorithm presented in this chapter is a modular variant of Skeen’s
decentralized three-phase protocol. It is more modular in the sense that we
encapsulate many tricky issues of NBAC within consensus.

• The terminating reliable broadcast problem was studied by Hadzilacos
and Toueg (Hadzilacos and Toueg 1994) in the context of crash failures.
This abstraction is a variant of the Byzantine Generals problem (Lamport,
Shostak, and Pease 1982). While the original Byzantine Generals prob-
lem considers processes that might behave in an arbitrary manner and,
in particular, be malicious, the terminating reliable broadcast abstraction
assumes that processes may only fail by crashing.

• The group membership problem was initially discussed by Birman and
Joseph (Birman and Joseph 1987a). They also introduced the view syn-
chronous abstraction. The specification we consider for that abstraction
was introduced later (Friedman and van Renesse 1995). This is a strong
specification as it ensures that messages are always delivered in the view
in which they were broadcast. Weaker specifications were also consid-
ered (Babaoglu, Bartoli, and Dini 1997; Chockler, Keidar, and Viten-
berg 2001; Fekete, Lynch, and Shvartsman 2001; Fekete and Lesley 2003;
Pereira, Rodrigues, and Oliveira 2003).

7. Concluding Remarks

The world must be coming to an end. Children no longer obey their parents
and every man wants to write a book.

(Writing on a tablet, unearthed not far from Babylon and dated back to
2800 B.C.)

In many areas of computing, theory and practice were able to sediment a
number of basic abstractions that are now taught to students and provided
to programmers in the forms of libraries, or even programming language
constructs.

The basic abstractions of sequential computing include data structures
like set, record, and array, as well as control structures like if-then-else, and
loops. In concurrent computing, fundamental abstractions include thread, mu-
tex, transaction, and semaphore, whereas the underlying abstractions of op-
erating systems include address space and file.

This book studies abstractions for distributed programming: broadcast,
shared memory, consensus, and its variants. Some of these might become, if
they are not already, the basic building blocks for building reliable distributed
applications.

We mention in the following practical systems that support (some) of
these abstractions as well as alternative books that describe their underlying
algorithms and implementations.

7.1 Further Implementations

The abstractions we studied have all been developed within the Appia li-
brary. This library was written in Java with the goal of supporting flexible
protocol compositions. Originally built for pedagogical purposes, Appia has
subsequently been used in many different research projects (Miranda, Pinto,
and Rodrigues 2001).

288 7. Conclusions

In the following, we enumerate other programming libraries that imple-
ment some of the abstractions we considered in this book. We then also give
pointers for more details on theoretical studies around the algorithmic aspects
of these abstractions.

V. The V distributed System was developed at Stanford University as part
of a research project to explore communication issues in distributed sys-
tems. The process group abstraction was introduced there to encapsulate
distribution (Cherriton and Zwaenepoel 1985).

Amoeba. The Amoeba microkernel-based system was developed at the Vrije
University of Amsterdam to devise applications on a collection of work-
stations or single board computers (Kaashoek, Tanenbaum, Hummel, and
Bal 1989).

Delta-4. An European project that defined an architecture to build de-
pendable system based on reliable (group) communication abstractions.
Many of the ideas underlying Delta-4 were later incorporated in the FT-
CORBA standard (Powell, Barret, Bonn, Chereque, Seaton, and Veris-
simo 1994; Rodrigues and Veŕıssimo 1992).

Replicated RPC. One of the first systems to use the group communication
abstraction to access replicated servers (Cooper 1984).

Isis/Horus/Ensemble/Spinglass. These were developed at Cornell University
to experiment with the group membership and view synchrony abstrac-
tions (Birman and Joseph 1987a; van Renesse, Birman, and Maffeis 1996).
Isis, the first in the suite, was a commercial product and, for many years,
was a reference system in the area (Birman and van Renesse 1993). Horus
was a modular implementation of Isis, and Ensemble an implementation
of it in the ML programming language with several optimizations of the
communication stack (Hayden 1998). Spinglass, the youngest in the fam-
ily, was based on gossip-based algorithms and designed for highly scalable
systems (Birman, van Renesse, and Vogels 2001).

Transis. A group communication system with algorithms defined for both
local-area and wide-are networks. The work on this system highlighted
the importance of uniform primitives (Amir, Dolev, Kramer, and Malki
1992).

Psync/Consul/Cactus/Coyote. A suite of group communication systems in-
spired by the x-kernel protocol composition framework. Consul was one
of the first systems to relax total order based on application semantics for
improved performance (Peterson, Bucholz, and Schlichting 1989; Mishra,
Peterson, and Schlichting 1993). Cactus was a follow-up on Consul based
on a microprotocol decomposition of group services. Many useful proto-
col composition lessons were extracted from this work (Bhatti, Hiltunen,
Schlichting, and Chiu 1998).

GARF/OGS/BAST. A suite of distributed programming libraries developed
at EPFL. The consensus abstraction was promoted as a first class citizen
of the libraries. A fine-grained composition methodology was proposed to

7.2 Theory to Practice 289

guide the programmer (Felber and Guerraoui 2000; Guerraoui, Eugster,
Felber, Garbinato, and Mazouni 2000).

Arjuna. An object-oriented distributed system integrating group communi-
cation and transaction abstractions (Parrington, Shrivastava, Wheater,
and Little 1995).

Totem. A group communication protocol suite well-known for a very efficient
implementation of total order on local-area network. It was used to build
FT-CORBA compliant systems (Moser, Melliar-Smith, Agarwal, Budhia,
Lingley-Ppadopoulos, and Archambault 1995).

Spread. A group communication suite with support for wide-area communi-
cation (Amir, Danilov, and Stanton 2000).

JGroups. A group communication protocol suite (written in Java) widely
used at the time of writing of this book (Ban 1998).

7.2 Further Readings

We enumerate, in the following, several books that also present distributed
programming abstractions. Some of the abstractions are different than those
we studied in this book. Some are similar but presented in a different manner.

• Tel(1994), Lynch(1996), Attiya and Welch(1998). These books sur-
vey the theory of distributed computing and address aspects like com-
plexity, which we did not cover here. Algorithms are written in a very
abstract way, making it easier to prove their correctness in a modular and
precise manner (Lynch 1996). Different computing models are considered,
with special emphasis on their similarities and the discrepancies between
them (Attiya and Welch 1998).

• Birman (1996), Veŕıssimo and Rodrigues(2001), Birman(2005).
These books take the perspective of the designer of a distributed system
and discuss crucial architectural decisions for achieving dependability.

• Colouris, Dollimore, and Kindberg(1994), Tanenbaum(2002). These
books present the operating system perspective of a distributed system, in-
cluding aspects like transactions, security, and naming.

• Raynal(1986). This book focuses on the allocation of resources to dis-
tributed processes and presents different solutions in an intuitive and co-
herent framework.

References

Abraham, I., G. V. Chockler, I. Keidar, and D. Malkhi (2004). Byzantine disk
paxos: optimal resilience with byzantine shared memory. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), pp. 226–235.

Aguilera, M., W. Chen, and S. Toueg (2000, May). Failure detection and consensus
in the crash recovery model. Distributed Computing 2 (13).

Alpern, B. and F. Schneider (1985). Defining lineness. Technical Report TR85-650,
Cornell University.

Amir, Y., C. Danilov, and J. Stanton (2000, June). A low latency, loss tolerant
architecture and protocol for wide area group communication. In International
Conference on Dependable Systems and Networks (FTCS-30, DCCA-8), New
York, USA.

Amir, Y., D. Dolev, S. Kramer, and D. Malki (1992, July). Transis: A communica-
tion sub-system for high availability. In 22nd Annual International Symposium
on Fault-Tolerant Computing (FTCS), Digest of Papers, pp. 76–84. IEEE.

Attiya, H., A. Bar-Noy, and D. Dolev (1995, June). Sharing memory robustly in
message passing systems. Journal of the ACM 1 (42).

Attiya, H. and J. Welch (1998). Distributed Computing. Mc Graw Hill.
Avoine, G., F. Gärtner, R. Guerraoui, and M. Vukolic (2005). Gracefully degrading

fair exchange with security modules. In Proceedings of the European Dependable
Computing Conference (EDCC), pp. 55–71.

Babaoglu, Ö., A. Bartoli, and G. Dini (1997). Enriched view synchrony: A pro-
gramming paradigm for partitionable asynchronous distributed systems. IEEE
Trans. Computers 46 (6), 642–658.

Baldoni, R., J.-M. Hélary, M. Raynal, and L. Tangui (2003). Consensus in byzantine
asynchronous systems. J. Discrete Algorithms 1 (2), 185–210.

Ban, B. (1998). Jgroups: A toolkit for building fault-tolerant distributed applica-
tions in large scale.

Ben-Or, M. (1983). Another advantage of free choice: Completely asynchonous
agreement protocols. In Proceedings of 2nd ACM Symposium on Principles of
Distributed Computing (PODC’83), Montreal, Canada, pp. 27–30.

Bhatti, N., M. Hiltunen, R. Schlichting, and W. Chiu (1998, November). Coyote:
A system for constructing fine-grain configurable communication services. ACM
Trans. on Computer Systems 16 (4), 321–366.

Birman, K. (1996). Building Secure and Reliable Network Applications. Prentice
Hall.

Birman, K. (2005). Reliable Distributed Systems: Technologies, Web Services and
Applications. Springer.

Birman, K., M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky (1999,
May). Bimodal multicast. ACM Transactions on Computer Systems 17 (2).

Birman, K. and T. Joseph (1987a, February). Reliable communication in the pres-
ence of failures. ACM Transactions on Computer Systems 1 (5).

292 References

Birman, K. and T. Joseph (1987b, February). Reliable Communication in the
Presence of Failures. ACM, Transactions on Computer Systems 5 (1).

Birman, K. and R. van Renesse (1993). Reliable Distributed Programming with the
Isis Toolkit. IEEE Computer Society Press.

Birman, K., R. van Renesse, and W. Vogels (2001, June). Spinglass: Secure and
scalable communications tools for mission-critical computing. In International
Survivability Conference and Exposition, Anaheim, California, USA.

Boichat, R., P. Dutta, S. Frolund, and R. Guerraoui (2001, January). Deconstruct-
ing paxos. Technical Report 49, EPFL, CH 1015, Lausanne.

Boichat, R., P. Dutta, S. Frolund, and R. Guerraoui (2003a, March). Deconstructing
paxos. In ACM SIGACT News Distributed Computing Colomn, Number 34 (1).

Boichat, R., P. Dutta, S. Frolund, and R. Guerraoui (2003b, June). Reconstructing
paxos. In ACM SIGACT News Distributed Computing Colomn, Number 34 (2).

Boichat, R. and R. Guerraoui (2005). Reliable and total order broadcast in a
crash-recovery model. Journal of Parallel and Distributed Computing .

Chandra, T., V. Hadzilacos, and S. Toueg (1996). The weakest failure detector for
consensus. Journal of the ACM .

Chandra, T. and S. Toueg (1996). Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM 43 (2), 225–267.

Chang, J. and N. Maxemchuck (1984, August). Reliable broadcast protocols. ACM,
Transactions on Computer Systems 2 (3).

Cherriton, D. and W. Zwaenepoel (1985, May). Distributed process groups in the
v kernel. ACM Transactions on Computer Systems 3 (2).

Chockler, G., I. Keidar, and R. Vitenberg (2001). Group communication specifica-
tions: A comprehensive study. ACM Computing Surveys 33 (4), 1–43.

Colouris, G., J. Dollimore, and T. Kindberg (1994). Distributed Systems, Concepts
and Designs. Addison Wesley Publishing Company.

Cooper, E. (1984, August). Replicated procedure call. In Proceedings of the 3rd
ACM symposyum on Principles of Distributed Computing, Berkeley, USA. ACM.

Delporte-Gallet, C., H. Fauconnier, and R. Guerraoui (2002, October). Failure
detection lower bounds on consensus and registers. In Proceedings of the Inter-
national Conference on Distributed Computing Systems (DISC’02).

Delporte-Gallet, C., H. Fauconnier, and R. Guerraoui (2005). The weakest failure
detectors to implement atomic objects in message passing systems. Technical
report, Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer
and Communication Systems.

Delporte-Gallet, C., H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov,
and S. Toueg (2004, July). The weakest failure detectors to solve certain funda-
mental problems in distributed computing. In In Proceedings of the 23rd ACM
Symposium on Principles of Distributed Computing (PODC 04), St.John’s.

Doudou, A., B. Garbinato, and R. Guerraoui (2005). Tolerating arbitrary failures
with state machine replication. In Dependable Computing Systems Paradigms,
Performance Issues, and Applications. Wiley.

Dutta, D. and R. Guerraoui (2002, July). The inherent price of indulgence. In
Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC’02).

Dwork, C., N. Lynch, and L. Stockmeyer (1988, April). Consensus in the presence
of partial synchrony. Journal of the ACM 35 (2), 288–323.

Eugster, P., R. Guerraoui, S. Handurukande, P. Kouznetsov, and A.-M. Kermarrec
(2003). Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21 (4),
341–374.

References 293

Eugster, P., R. Guerraoui, and P. Kouznetsov (2004, March). Delta reliable
broadcast: A probabilistic measure of broadcast reliability. In Proceedings of
the IEEE International Conference on Distributed Computing Systems (ICDCS
2004), Tokyo, Japan.

Ezhilchelvan, P., A. Mostefaoui, and M. Raynal (2001, May). Randomized mul-
tivalued consensus. In Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, Magdeburg, Germany.

Fekete, A. and N. Lesley (2003). Providing view synchrony for group communication
services. Acta Informatica 40 (3), 159–210.

Fekete, A., N. Lynch, and A. Shvartsman (2001). Specifying and using a parti-
tionable group communication service. ACM Transactions on Computer Sys-
tems 19 (2), 171–216.

Felber, P. and R. Guerraoui (2000). Programming with object groups in corba.
IEEE Concurrency 8 (1), 48–58.

Fidge, C. (1988). Timestamps in Message-Passing Systems that Preserve the Partial
Ordering. In Proceedings of the 11th Australian Computer Science Conference.

Fischer, M., N. Lynch, and M. Paterson (1985, April). Impossibility of distributed
consensus with one faulty process. Journal of the Association for Computing
Machinery 32 (2), 374–382.

Friedman, R. and R. van Renesse (1995, March). Strong and weak virtual synchrony
in horus. Technical Report 95-1537, Department of Computer Science, Cornell
University.

Garbinato, B., F. Pedone, and R. Schmidt (2004). An adaptive algorithm for
efficient message diffusion in unreliable environments. In Proceedings of the IEEE
International Conference on Dependable Systems and Networks (DSN), pp. 507–
516.

Golding, R. and D. Long (1992, October). Design choices for weak-consistency
group communication. Technical Report UCSC–CRL–92–45, University of Cali-
fornia Santa Cruz.

Gray, C. and D. Cheriton (1989, December). Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, Litchfield Park, Arizona, pp.
202–210.

Gray, J. (1978). Notes on database operating systems. Lecture Notes in Computer
Science.

Guerraoui, R. (2000, July). Indulgent algorithms. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC’00).

Guerraoui, R. (2002). Non-blocking atomic commit in asynchronous distributed
systems with failure detectors. Distributed Computing 15 (1), 17–25.

Guerraoui, R., P. Eugster, P. Felber, B. Garbinato, and K. Mazouni (2000). Expe-
riences with object group systems. Softw., Pract. Exper. 30 (12), 1375–1404.

Guerraoui, R. and R. Levy (2004, March). Robust emulations of a shared memory
in a crash-recovery model. In Proceedings of the IEEE International Conference
on Distributed Computing Systems (ICDCS 2004), Tokyo, Japan.

Guerraoui, R., R. Oliveria, and A. Schiper (1997). Stubborn communication chan-
nels. Technical Report TR97, EPFL.

Guerraoui, R. and M. Raynal (2004). The information structure of indulgent con-
sensus. IEEE Trans. Computers 53 (4), 453–466.

Guerraoui, R. and A. Schiper (2001). Genuine atomic multicast in asynchronous
distributed systems. Theoretical Computer Science 254, 297–316.

Gupta, I., A.-M. Kermarrec, and A. Ganesh (2002, October). Adaptive and efficient
epidemic-style protocols for reliable and scalable multicast. In Proceedings of
Symposium on Reliable and Distributed Systems (SRDS 2002), Osaka, Japan.

294 References

Hadzilacos, V. (1984). Issues of fault tolerance in concurrent computations. Tech-
nical Report 11-84, Harvard University, Ph.D thesis.

Hadzilacos, V. and S. Toueg (1994, May). A modular approach to fault-tolerant
broadcast and related problems. Technical Report 94-1425, Cornell University,
Dept of Computer Science, Ithaca, NY.

Hayden, M. (1998). The Ensemble System. Ph. D. thesis, Cornell University,
Computer Science Department.

Herlihy, M. and J. Wing (1990, July). Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Sys-
tems 3 (12).

Israeli, A. and M. Li (1993). Bounded timestamps. Distributed Computing 4 (6),
205–209.

Jelasity, M., R. Guerraoui, A.-M. Kermarrec, and M. van Steen (2004, October).
The peer sampling service: Experimental evaluation of unstructured gossip-
based implementations. In H.-A. Jacobsen (Ed.), Middleware 2004, ACM/I-
FIP/USENIX International Middleware Conference, Lecture Notes in Computer
Science 3231, Toronto, Canada, pp. 79–98. Springer.

Kaashoek, F. and A. Tanenbaum (1991, May). Group communication in the
Amoeba distributed operating system. In Proceedings of the 11th International
Conference on Distributed Computing Systems, Arlington, Texas, USA, pp. 222–
230. IEEE.

Kaashoek, F., A. Tanenbaum, S. Hummel, and H. Bal (1989, October). An efficient
reliable broadcast protocol. Operating Systems Review 4 (23).

Kermarrec, A.-M., L. Massoulie, and A. Ganesh (2000, October). Reliable proba-
bilistic communication in large-scale information dissemination systems. Tech-
nical Report MMSR-TR-2000-105, Microsoft Reserach, Cambridge, UK.

Koldehofe, B. (2003). Buffer management in probabilistic peer-to-peer communica-
tion protocols. In Proceedings IEEE Symposium on Reliable Distributed Systems
(SRDS).

Kouznetsov, P., R. Guerraoui, S. Handurukande, and A.-M. Kermarrec (2001, Oc-
tober). Reducing noise in gossip-based reliable broadcast. In Proceedings of the
20th Symposium on Reliable Distributed Systems (SRDS), NewOrleans,USA.

Ladin, R., B. Liskov, L. Shrira, and S. Ghemawat (1990). Lazy replication: Ex-
ploiting the semantics of distributed services. In Proceedings of the Ninth Annual
ACM Symposium of Principles of Distributed Computing, pp. 43–57.

Lamport, L. (1977). Concurrent reading and writing. Communications of the
ACM 11 (20), 806–811.

Lamport, L. (1978, July). Time, clocks and the ordering of events in a distributed
system. Communications of the ACM 21 (7), 558–565.

Lamport, L. (1986a). On interprocess communication, part i: Basic formalism.
Distributed Computing 2 (1), 75–85.

Lamport, L. (1986b). On interprocess communication, part ii: Algorithms. Dis-
tributed Computing 2 (1), 86–101.

Lamport, L. (1989, May). The part-time parliament. Technical Report 49, Digital,
Systems Research Center, Palo Alto, California.

Lamport, L., R. Shostak, and M. Pease (1982, July). The byzantine generals prob-
lem. ACM Transactions on Prog. Lang. and Systems 4 (3).

Lin, M.-J. and K. Marzullo (1999, September). Directional gossip: Gossip in a wide
area network. In Proceedings of 3rd European Dependable Computing Conference,
pp. 364–379.

Lynch, N. (1996). Distributed Algorithms. Morgan Kaufmann.

References 295

Lynch, N. and A. Shvartsman (1997). Robust emulation of shared memory using
dynamic quorum acknowledged broadcasts. In Proceedings of the International
Symposium on Fault-Tolerant Computing Systems (FTCS’97).

Lynch, N. and A. Shvartsman (2002, October). Rambo: A reconfigurable atomic
memory service for dynamic networks. In Proceedings of the International Con-
ference on Distributed Computing Systems (DISC’02).

Malkhi, D. and M. K. Reiter (1997). Byzantine quorum systems. In Proceedings of
the ACM Symposium on the Theory of Computing (STOC), pp. 569–578.

Martin, J.-P. and L. Alvisi (2004). A framework for dynamic byzantine storage. In
Proceedings of the IEEE International Conference on Dependable Systems and
Networks (DSN), pp. 325–334.

Miranda, H., A. Pinto, and L. Rodrigues (2001, April). Appia, a flexible proto-
col kernel supporting multiple coordinated channels. In Proceedings of the 21st
International Conference on Distributed Computing Systems, Phoenix, Arizona,
pp. 707–710. IEEE.

Mishra, S., L. Peterson, and R. Schlichting (1993, October). Experience with mod-
ularity in consul. Software Practice and Experience 23 (10), 1059–1075.

Moser, L., P. Melliar-Smith, A. Agarwal, R. Budhia, C. Lingley-Ppadopoulos, and
T. Archambault (1995, June). The totem system. In Digest of Papers of the
25th International Symposium on Fault-Tolerant Computing Systems, pp. 61–66.
IEEE.

Neiger, G. and S. Toueg (1993, April). Simulating synchronized clocks and common
knowledge in distributed systems. Journal of the ACM 2 (40).

Parrington, G., S. Shrivastava, S. Wheater, and M. Little (1995). The design and
implementation of arjuna computing systems. The Journal of the USENIX As-
sociation 8 (3).

Pereira, J., L. Rodrigues, and R. Oliveira (2003, February). Semantically reliable
multicast: Definition, implementation and performance evaluation. IEEE Trans-
actions on Computers, Special Issue on Reliable Distributed Systems 52 (2), 150–
165.

Peterson, G. (1983). Concurrent reading while writing. ACM Transactions on Prog.
Lang. and Systems 1 (5), 56–65.

Peterson, L., N. Bucholz, and R. Schlichting (1989). Preserving and using context
information in interprocess communication. ACM Transactions on Computer
Systems 7 (3), 217–246.

Postel (1981). Transmission control protocol: Internet rfc 793. Technical report,
Information Sciences Institute, University of Southern California.

Powell, D., P. Barret, G. Bonn, M. Chereque, D. Seaton, and P. Verissimo (1994).
The delta-4 distributed fault-tolerant architecture. Readings in Distributed Sys-
tems, IEEE, Casavant and Singhal (eds).

Raynal, M. (1986). Algorithms for Mutual Exclusion. MIT Press.
Raynal, M., A. Schiper, and S. Toueg (1991, September). The causal ordering ab-

straction and a simple way to implement it. Information processing letters 39 (6),
343–350.

Rodrigues, L., H. Fonseca, and P. Veŕıssimo (1996, May). Totally ordered multicast
in large-scale systems. In Proceedings of the 16th International Conference on
Distributed Computing Systems, Hong Kong, pp. 503–510. IEEE.

Rodrigues, L., R. Guerraoui, and A. Schiper (1998). Scalable atomic multicast. In
IEEE Proceedings of IC3N’98.

Rodrigues, L., S. Handurukande, J. Pereira, R. Guerraoui, and A.-M. Kermarrec
(2003, June). Adaptive gossip-based broadcast. In Proceedings of the IEEE
International Symposium on Dependable Systems and Networks.

296 References

Rodrigues, L. and M. Raynal (2003). Atomic broadcast in asynchronous crash-
recovery distributed systems and its use in quorum-based replication. IEEE
Transactions on Knowledge and Data Engineering 15 (4).

Rodrigues, L. and P. Veŕıssimo (1992, October). xAMp: a Multi-primitive Group
Communications Service. In Proceedings of the 11th Symposium on Reliable
Distributed Systems (SRDS’11), Houston, Texas, pp. 112–121. IEEE.

Rufino, J., P. Veŕıssimo, G. Arroz, C. Almeida, and L. Rodrigues (1998, July).
Fault-tolerant broadcasts in CAN. In Digest of Papers, The 28nd International
Symposium on Fault-Tolerant Computing, Munich, Germany, pp. 69–73. IEEE.

Schneider, F. (1990). Implementing fault-tolerant services with the state machine
approach. ACM Computing Surveys (22 (4)), 300–319.

Schneider, F., D. Gries, and R. Schlichting (1984). Fault-tolerant broadcasts. Sci-
ence of Computer Programming (4), 1–15.

Schwarz, R. and F. Mattern (1992, February). Detecting causal relationships in
distributed computations: In search of the holy grail. Technical report, Univ.
Kaiserslautern, Kaiserslautern, Germany.

Shao, C., E. Pierce, and J. Welch (2003, October). Multi-writer consistency con-
ditions for shared memory objects. In Proceedings of the 17th Symposium on
Distributed Computing (DISC 2003), Sorrento,Italy.

Skeen, D. (1981, July). A decentralized termination protocol. In Proceedings of
the 1st Symposium on Reliability in Distributed Software and Database Systems,
Pittsburgh, USA. IEEE.

Tanenbaum, A. and M. van Steen (2002). Distributed Systems: Principles and
Paradigms. Prentice Hall.

Tel, G. (1994). Introduction to Distributed Algorithms. Cambridge University Press.
van Renesse, R., K. Birman, and S. Maffeis (1996, April). Horus: A flexible group

communication system. Communications of the ACM 4 (39).
Veŕıssimo, P. and L. Rodrigues (2001). Distributed Systems for System Architects.

Kluwer Academic Publishers.
Veŕıssimo, P., L. Rodrigues, and M. Baptista (1989, September). AMp: A highly

parallel atomic multicast protocol. In Proceedings of the SIGCOM’89 Symposium,
Austin, USA, pp. 83–93. ACM.

Vidyasankar, K. (1988, August). Converting lamport’s regular register to atomic
register. Information Processing Letters (28).

Vidyasankar, K. (1990, June). Concurrent reading while writing revisited. Dis-
tributed Computing 2 (4).

Vitanyi, P. and B. Awerbuch (1986). Atomic shared register by asynchronous
hardware. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS’86), pp. 233–243.

Voulgaris, S., M. Jelasity, and M. van Steen (2003, July). A robust and scalable
peer-to-peer gossiping protocol. In G. Moro, C. Sartori, and M. Singh (Eds.),
Agents and Peer-to-Peer Computing, Second International Workshop, Lecture
Notes in Computer Science 2872, Melbourne, Australia. Springer.

Wensley, J. e. a. (1978, October). The design and analysis of a fault-tolerant com-
puter for air craft control. IEEE 10 (66).

Xiao, Z., K. Birman, and R. van Renesse (2002, June). Optimizing buffer manage-
ment for reliable multicast. In Proceedings of The International Conference on
Dependable Systems and Networks (DSN 2002), Washington, USA.

Yin, J., J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin (2003). Separating
agreement from execution for byzantine fault tolerant services. In Proceedings
of the ACM Symposium on Operating System Principles of Operating Systems
(SOSP).

Index

accuracy, 48, 52
algorithm
– All-Ack Uniform Reliable Broadcast,

78
– Basic Broadcast, 71
– Basic Stubborn Broadcast, 82
– Consensus-Based Group Member-

ship, 248
– Consensus-Based NBAC, 244
– Consensus-Based TRB, 240
– deterministic, 28
– distributed, 13, 26
– Eager Probabilistic Broadcast, 89
– Eager Reliable Broadcast, 74
– Elect Lower Epoch, 55
– Eliminate Duplicates, 39
– Exclude on Timeout, 48
– execution, 26
– fail-noisy, 14
– fail-recovery, 14, 82, 83, 86, 168, 277
– fail-silent, 14, 71, 80, 96, 143, 155,

163
– fail-silent), 75
– fail-stop, 14, 51, 73, 78, 140, 154, 162,

190, 193, 196, 240, 244, 248, 251, 255
– Flooding Consensus, 190
– Flooding Uniform Consensus, 196
– Hierarchical Consensus, 193
– Hierarchical Uniform Consensus, 197
– Increasing Timeout, 53
– Lazy Probabilistic Broadcast, 91
– Lazy Reliable Broadcast, 73
– Log Delivered, 41
– Logged Abortable Consensus, 206
– Logged Basic Broadcast, 83
– Logged Majority-Ack URB, 86
– Logged-Majority-Voting, 167
– Majority-Ack URB, 79
– Majority-Voting Regular Register,

143
– Monarchical Leader Election, 51

– No-Waiting Causal Broadcast, 96
– Probabilistic Consensus, 209
– randomized, 14, 28, 89, 91, 209
– Read-Impose Write-All (1, N)

Atomic Register, 153
– Read-Impose Write-Consult (N, N)

Atomic Register, 162
– Read-Impose Write-Consult-Majority

(N, N) Atomic Register, 162
– Read-Impose Write-Majority (1, N)

Atomic Register, 155
– Read-One Write-All Regular

Register, 140
– Retransmit Forever, 37
– RW Abortable Consensus, 201
– TRB-Based View Synchrony, 251,

255
– Uniform Total Order Broadcast, 236
– Waiting Causal Broadcast, 98

causal order, 94
communication step, 27
completeness, 48, 52, 139
concurrent operations, 139
consensus, 189
– randomized, 208
– regular, 189
– uniform, 195
coverage, 46
crash-recovery, 32

decide, 189

event
– attributes, 9
– bebBroadcast, 71
– bebDeliver, 71
– BoundedPrintRequest, 13
– cDecide, 190
– coBroadcast, 95
– coDeliver, 95
– confirmation, 10

298 Index

– cPropose, 190
– crash, 48
– flp2pDeliver, 36
– flp2pSend, 36
– gmView, 247
– indication, 11
– Init, 13, 32
– leLeader, 51
– log-bebBroadcast, 84
– log-bebDeliver, 84
– log-pp2pDeliver, 41
– log-pp2pSend, 41
– log-rbBroadcast, 129
– log-rbDeliver, 129
– log-urbBroadcast, 85
– log-urbDeliver, 85
– lutoBroadcast, 278
– lutoDeliver, 278
– nbacDecide, 244
– nbacPropose, 244
– nn-rregRead, 159
– nn-rregReadReturn, 159
– nn-rregWrite, 159
– nn-rregWriteReturn, 159
– on-aregRead, 148
– on-aregReadReturn, 148
– on-aregWrite, 148
– on-aregWriteReturn, 148
– on-log-rregRead, 167
– on-log-rregReadReturn, 167
– on-log-rregWrite, 167
– on-log-rregWriteReturn, 167
– on-rregRead, 141
– on-rregReadReturn, 141
– on-rregWrite, 141
– on-rregWriteReturn, 141
– pbBroadcast, 89
– pbDeliver, 89
– pp2pDeliver, 39
– pp2pSend, 39
– PrintAlarm, 13
– PrintConfirm, 12
– PrintRequest, 12
– PrintStatus, 13
– rbBroadcast, 73
– rbDeliver, 73
– rcDecide, 209
– rcoBroadcast, 96
– rcoDeliver, 96
– rcPropose, 209
– Recovery, 32
– request, 10
– restore, 53

– rsmExecute, 280
– rsmOutput, 280
– sbebBroadcast, 82
– sbebDeliver, 82
– sp2pDeliver, 37
– sp2pSend, 37
– suspect, 53
– toBroadcast, 235
– toDeliver, 235
– trbBroadcast, 240
– trbDeliver, 240
– trust, 55
– ucDecide, 196
– ucPropose, 196
– urbBroadcast, 77
– urbDeliver, 77
– urcoBroadcast, 96
– urcoDeliver, 96
– utoBroadcast, 235
– utoDeliver, 235
– vsBlock, 252
– vsBlockOk, 252
– vsBroadcast, 252
– vsDeliver, 252
– vsView, 252
events, 9

failure
– crash-recovery, 32
– detector, 47
– – eventually perfect, 51
– – perfect, 48
– link, 35
– process, 29
– suspicion, 52
fault
– arbitrary, 30
– crash, 31
– omission, 30
fault tolerance, 6

gossip, 90
graceful degradation, 59
group, 247
group membership, linear, 247
group view, 247
group membership, 246

heartbeat, 45, 49, 55

layer, 9
leader
– election, 50
– eventual detector, 54

Index 299

lease, 45
linearization, 158
link, 34
– fair-loss, 36
– perfect, 38
– stubborn, 36
liveness, 28
load balancing, 6
log, 32
logical clock, 43, 44
logical time, 43

membership
– group, 246
message
– deliver, 11, 27
– receive, 11, 27
– sending, 27
model
– fail-noisy, 58
– fail-recovery, 59
– fail-silent, 58
– fail-stop, 58
– randomized, 59
module, 11
– (1, N)AtomicRegister, 148
– (1, N)LoggedRegularRegister, 167
– (1, N)RegularRegister, 141
– (N, N)AtomicRegister, 159
– (regular)Consensus, 190
– (regular)ReliableBroadcast, 73
– abortableConsensus, 201
– BestEffortBroadcast, 71
– CausalOrder, 95
– EventualLeaderDetector, 55
– EventuallyPerfectFailureDetector, 53
– FairLossPointToPointLinks, 36
– LeaderElection, 51
– loggedAbortableConsensus, 206
– LoggedBestEffortBroadcast, 84
– loggedConsensus, 206
– LoggedPerfectPointToPointLink, 41
– LoggedReliableBroadcast, 129
– LoggedUniformReliableBroadcast, 85
– LoggedUniformTotalOrder, 278
– Membership, 247
– Non-BlockingAtomicCommit, 244
– PerfectFailureDetector, 48
– PerfectPointToPointLink, 39
– ProbabilisticBroadcast, 89
– RandomizedConsensus, 209

– ReliableCausalOrder, 96
– ReplicatedStateMachine, 280
– StubbornBestEffortBroadcast, 82
– StubbornPointToPointLink, 37
– TerminatingReliableBroadcast, 240
– TotalOrder, 235
– UniformConsensus, 196
– UniformReliableBroadcast, 77
– UniformReliableCausalOrder, 96
– UniformTotalOrder, 235
– ViewSynchrony, 252

non-blocking atomic commit, 242

order
– causal, 94
– partial, 139
– total, 139, 234

performance, 59
precedence, 139
process, 26
propose, 189
protocol, 13, 15
publish-subscribe, 4

register, 135
– atomic, 135, 136
– – (1, N), 155, 160
– – (1, 1), 149, 151
– – (1, N), 147, 149, 151, 154
– – (N, N), 158, 160, 162
– regular, 135, 136
– – (1, N), 140, 144, 149, 166, 168
retrieve, 32

safety, 28
sequential operations, 139
state machine, 234
store, 32
system
– asynchronous, 43
– partially synchronous, 46
– synchronous, 45

terminating reliable broadcast, 239
timeout, 48
total order, 234

view-synchrony, 249

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

